Title	System-on-Chip and Embedded Computing for Ultrasonic Imaging, Deep
Lecturer names and affiliations	Learning, Data Compression, and Software-Defined Communications Jafar Saniie, Department of Electrical and Computer Engineering at Illinois Institute of Technology Erdal Oruklu, Department of Electrical and Computer Engineering, Illinois Institute of Technology
Course Outline	Topics include: (1) ultrasonic signal modeling and echo classification, (2) time-frequency analysis and split-spectrum processing, (3) order statistics and deep artificial neural networks for target detection, (4) chirplet echo estimation, (5) discrete wavelet transform for data compression, (6) software-defined communications, and (7) system-on-chip implementation.
Abstract	In this short course, we present signal processing algorithms and system-on-chip designs for ultrasonic imaging applications. This course covers several case studies such as detecting defects in steam generator tubes used in nuclear power plants, pulse-echo chirplet estimation, flaw detection in large grained materials using order statistics and deep artificial neural networks, 3D ultrasonic data compression, software-defined ultrasonic system for communication through solid structures, and hardware/software codesign using FPGAs for ultrasonic signal processing applications.
Target audience	This short course covers fundamental and advanced ultrasonic signal processing topics and system-on-chip designs of interest to Graduate Students and Researches involved in medical ultrasound and ultrasonic nondestructive evaluation.