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SAW Sensor Background

Single Port Device
- Measure reflected interrogation signal (S,,); passive operation
= Post-processing to determine how frequency, phase, time-delay of reflected signal is
changing
= Operation analogous to “RADAR” principals

e 10 MHz — 3 GHz Operation
= Fabrication tolerances limit; sensor size dominated by antenna in wireless configuration

- Common to operate at 915 MHz or 2.4 GHz range

e Variety of Device Embodiments
= Resonant, delay line (narrow or wideband)
= Exquisitely sensitive to temperature, strain (pressure), mass loading (e.g., gas detection)

- Radiation tolerant
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Objective & Advantages of SAW Devices

Overall Objective: Develop surface acoustic wave (SAW) based online dissolved gas analysis
(DGA) systems for power transformers (i.e., off gassing in transformer indicative of aging &
potential failures)

- SAW devices w/ integrated high surface area nanostructured scaffolds + selective
chemistry

Advantages:

e Current DGA monitors are costly and slow (laboratory analysis)
= Online systems on the order of $50,000

e SAW devices are mass produced (mostly for RF filters, delay lines, resonators)
- A few cents to a few dollars based on production volume
= Total system cost < $1000 (much cheaper than current DGA systems)

= No local power source is needed for passive/wireless SAW operation; can communicate w/low cost
radio electronics

e Array of SAW devices can be selectively functionalized w/appropriate chemistry to detect
multiple gasses

= Cost-effective ubiquitous monitoring of transformer health; both large & small transformers
= Continuous monitoring reduces unforeseen failures & grid down time
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Methane Sensing SAW Technology Platform

Nanostructured Materials:

Sensor performance is affected by granularity, porosity, & surface area/volume ratio of
the sensing element

= Facilitates rapid diffusion of gases into & out of the sensing material

= Increased adsorption & reaction rate

= |mproved response & recovery time

= Increased sensitivity & low detection limit

= Nanostructured surface promotes application of uniform sensing chemistry

Nanostructured Material Systems — 2 approaches:

= Spinodally phase separated silica films
= Chemically phase-separated TiO,/Cu,O composite films

Sensing Chemistry: Cryptophane-A Cryptophane-A

= Size selective & reversible affinity for CH,,
traps CH, (sits in the cavity)
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(Chavagnac Internat. Innovation, 2015, 126-128)
cryptophane-A

Integration to piezoelectric QCM & SAW platforms:

= Proof-of-principal first on QCM (track frequency shift due to mass loading); then
- Integrate to YZ-LINbO, based SAW device platform
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Approach 1: Nanostructured Spinodally Phase
Separated Porous Silica Films

Step I:  Fabrication of thin film glass coatings via industrial processes

ORNL Glass target Glass film deposition Glass film on silica
(X% SIO,, Y% B,0,, 1% Na,0)

Ref: http://glassproperties.com/map.htm

Areas of immiscibility in the
SiO,-B,05-Na,O system used to make
Vycor and Pyrex
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Approach 1: Nanostructured Silica Films Cont. d

STEP II: Techniques to create nanostructured surfaces

Heat Treatment

—— o
Sodium Borosilicate glass 500 - 700 °C

Phase separated
spinodal decomposition
1) Sodium borate
2) Silicarich phases

Transparent template
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Sodium Borosilicate Spinodal Phase Separating Glass

paseq-4H

Amorphous
] Silica

— Sodium

Borate

The spinodal microstructure is

determined by :

e Heat treatment temperature &
time

And, the final etched-out

nanostructure controlled by:

e Etchant type, concentration &
etch duration




Approach 1: Coating Engineering

Longer the annealing time, larger the size of the phase separated film structure

SH film SH film

100 nm Fused silica 1oﬂm Fused silica
Heat treatment temperature = 710 °C Heat treatment temperature = 710 °C
Heat treatment time =5 min Heat treatment time = 120 min
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Approach 1: Coating Engineering Cont d

Coating Coating

A AU/QCM !
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Heat treatment temperature = 700 °C
%@ Heat treatment time = 12 min
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Heat treatment temperature = 700 °C
Heat treatment time =12 min




Approach 2: Phase Separated Metal-Oxide
TiO,:Cu,0 Nanocomposite Films

Exploits phase separation in oxide materials: a new composite based on TiO,-Cu,0
- Phase separation is driven by thermodynamic stability combined w/ insolubility between TiO, & Cu,0

- Nanostructural transformation is governed by the minimization of the lattice misfit strain (~12%) between
TiO, & Cu,0

- Material system is naturally abundant, non-toxic, inexpensive, chemically & environmentally stable
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Cross-sectional Z-Contrast STEM & Integrated EELS Reveal
Nanostructured Phase Separation in TiO,:Cu,0 Composite

Cu,0/QCM Ti0,:Cu,0/QCM

TiO,:Cu,0
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Demonstrated low detection limits for CO, &
Humidity Sensing for TiO,:Cu,0 Coated QCM

Chemistry (CO,) : 1-ethyl-3-methylimidazolium (EMIM) Chemistry (H,0): polyacrylamide (PAAm)
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QCM: H, Sensing (Pd)
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Approach 1: Nanostructured silica films
Exploits spinodal phase decomposition
in glass materials

—Integrated onto LiNbO,

h Surface Area Porous Nanostructured
Sensor Films: QCM & LiNbO,

Collaboration with

QCM: H, Sensing (Pd) Paul Ohodnicki (NETL)
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Approach 2: Nanostructured TiO,-Cu,O films
Exploits control of materials phase
separation in metal oxide systems

Coating




SAW Design (250 MHz)

. — SAW schematic
manostructure film deposition through shadow mask (double track) \
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Influence of Film Morphology on SAW Performance
TiO,/Cu,O Film SiO, Film

——  SAW device - No film overlay

——  SAW device - No film overlay
_50 ___ SAW device - TiO,:Cu,0 overlay

SAW device - Silica overla
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e Deposition process/methods did not seem to adversely affect SAW performance
of transducers/reflectors that do not have film overlay

e Silica thin films show no affect on SAW device performance (Low Lo0sS)
e TiO,:Cu,0 films initially showed attenuation. Process has been optimized
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CH, Sensing Experiments w/250 MHz Device

* Exposed sensor to 100% and 500 ppm (desired sensitivity) methane
» Sensor has reference (temp.) and sensing (methane) channel
= Sensing channel shows larger freq. shift than ref. channel when exposed to 100% methane

= For 500 ppm observed similar shift for both channels (likely dominated by temperature) =» low
sensitivity to methane
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» Solution: Increase device frequency to increase the sensitivity (i.e., mass on surface)
= Design SAW devices for 915 MHz operation # predict 500-1000% increase in sensitivity
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SAW Design (915 MHz)

Shadow mask

\ (laser cut)

SAW die w/915 MHz devices

(double track) /

@ensor test module
Gas outlet < )
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Pogo pin connections
(no wire bonds)
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e New test fixture for rapid testing

= Old design required wire
bonding & adhesive
bonding to PCB

= New fixture routes RF
signal to pogo pins; chip is
placed into chamber &
pogo pins make direct
connection

e Wide-band, multi-chip
(reflector) design for improved
SNR (pulse compression gain)



Initial CH, Sensing Experiments w/915 MHz Device

915.13 , ,
500 ppm 500 ppm
915.124 CH,on CH, off -
= 915.11 - : I -
N’ [ I [
> 915.10 | I i
5 915.00. i -
S 915.09- | l
] | !
o 915.08-l : | .
915.07 - I |— Reference .
' | I— Sensing
915.06 | _

19:04 19:12 19:19 19:26
Time (min.)
e For 500 ppm CH,, observed ~30 KHz shift for sensing channel

e Processing protocols of nanostructured films & sensing chemistry are being optimized
to achieve higher sensitivity
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State-of-the-art Technology - Siemens GAS-Guard® 8

Accurate and repeatable measurement
of eight (8) critical fault gases

®¢ |Hydrogen H, | +/-5% or +/-2 ppm ‘ <2% ‘ 2-3,000 ppm ‘

@, |Oxygen 0, |+/-5% or +30/-0ppm <1% 30-5,000 ppm ‘

,’{ Methane CH, | +/-5% or +/-10 ppm ‘ <1% ‘10—5,000 ppm |

' @®¢ |Carbon Monoxide CO | +/-5% or+/-3 ppm <1% 3-10,000 ppm‘

Column : Chromatographic

| Spectrum of Gases . |CarbonDioxide  CO,| +-5% or+/-5 ppm ‘ <1% ‘5-30,000 ppm |

A 2 :‘ H Ethylene CH, | +/-5% or +/-3 ppm <1% 3-5,000 ppm ‘

= dissipated gas :f," Ethane C.H, | +/-5% or +/-5 ppm ‘ <1% ‘ 5-5,000 ppm ‘

Data Management : .“' Acetylene CH, | +/-5% or +/-1 ppm <2% 1-3,000 ppm ‘

OAK RIDGE
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NOTES: All specifications are independent of oil temperature and gas pressure level
1 Percent of ppm- whichever is greater

2 At gas calibration level

3 Gagin-oil



SAW Design Parameters (250 MHz)

» Substrate: YZ-LINbO,

» SAW Velocity: 3488 m/s

» Wavelength (250MHz): 13.95 um
1 Ya-AN=3.4875 pm

» Beamwidth: 50-A = 697.5 um

» Transducer Electrode Pairs: 11
] 1=44ns; NBW = 45 MHz

» Reflector Electrodes: 65

%NOAK RIDGE
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ional Laboratory




Dual Channel SAW Device (1-Port)

» SAW device can be split into
multiple tracks

1 E.g. reference and sensing track

— DGS1-RO-PT4-1, 511 -RO-PT1-1, 511

. -1 Transducer S11
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SAW Field Validation

» Embedded interrogation systems
with Udoo x86

» Wireless SAW temperature sensor
testing in anechoic chamber

» SAW sensor temperature cycling in
environmental chamber

80 .

60 I/.
O SAW Sensor
° ¥ N\ |=—- Thermocouple
L 40 p
2
5
a 20
=
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-20

0 1000 2000 3000 4000 5000 6000
Time (s)
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Anechoic Chamber Results

» Monopole, Yagi, and Patch Panel antennas tested

» Sensor can operate up to 5 meters (Limited by chamber length)
» Measurement precision down to 0.027°C observed

» Best performance observed with Patch Panel antenna

Ettus Vert900 (782773-01) >1.0 Pasternack Yagi (PE51171) >1.0
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Nanostructuring on SAW Reflectors

TiO,/Cu,O Film SiO2 Film
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