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● Single Port Device

 Measure reflected interrogation signal (S11); passive operation

 Post-processing to determine how frequency, phase, time-delay of reflected signal is 

changing

 Operation analogous to “RADAR” principals

● 10 MHz ― 3 GHz Operation

 Fabrication tolerances limit; sensor size dominated by antenna in wireless configuration

 Common to operate at 915 MHz or 2.4 GHz range

● Variety of Device Embodiments

 Resonant, delay line (narrow or wideband)

 Exquisitely sensitive to temperature, strain (pressure), mass loading (e.g., gas detection)

 Radiation tolerant

Chemically Sensitive 
Film

SAW 
Reflectors

Antenna

SAW 
Transducer

SAW Sensor Background
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Overall Objective: Develop surface acoustic wave (SAW) based online dissolved gas analysis 

(DGA) systems for power transformers (i.e., off gassing in transformer indicative of aging & 

potential failures)

 SAW devices w/ integrated high surface area nanostructured scaffolds + selective 

chemistry

Advantages:

● Current DGA monitors are costly and slow (laboratory analysis)

 Online systems on the order of $50,000

● SAW devices are mass produced (mostly for RF filters, delay lines, resonators)

 A few cents to a few dollars based on production volume

 Total system cost < $1000 (much cheaper than current DGA systems)

 No local power source is needed for passive/wireless SAW operation; can communicate w/low cost 

radio electronics

● Array of SAW devices can be selectively functionalized w/appropriate chemistry to detect 

multiple gasses

 Cost-effective ubiquitous monitoring of transformer health; both large & small transformers

 Continuous monitoring reduces unforeseen failures & grid down time

Gas: Hydrogen Methane Acetylene Ethylene Ethane
Carbon 

Monoxide

Carbon 

Dioxide

Concentration 

(ppm)
700-1800 400-1000 10-35 100-200 100-150 570-1400 4000-10000

Objective & Advantages of SAW Devices
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Methane Sensing SAW Technology Platform
Nanostructured Materials:
Sensor performance is affected by granularity, porosity, & surface area/volume ratio of 
the sensing element

 Facilitates rapid diffusion of gases into & out of the sensing material
 Increased adsorption & reaction rate
 Improved response & recovery time
 Increased sensitivity & low detection limit
 Nanostructured surface promotes application of uniform sensing chemistry 

Sensing Chemistry: Cryptophane-A

 Size selective & reversible affinity for CH4,
traps CH4 (sits in the cavity)

Cryptophane-A

Integration to piezoelectric QCM & SAW platforms:
 Proof-of-principal first on QCM (track frequency shift due to mass loading); then
 Integrate to YZ-LiNbO3 based SAW device platform

Methane encapsulated by cryptophane-A

(Chavagnac Internat. Innovation, 2015, 126-128) 

Nanostructured Material Systems – 2 approaches:
 Spinodally phase separated silica films
 Chemically phase-separated TiO2/Cu2O composite films
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ORNL Glass target

(X% SiO2, Y% B2O3, Z% Na2O)
Glass film deposition Glass film on silica

Step I: Fabrication of thin film glass coatings via industrial processes 

Approach 1: Nanostructured Spinodally Phase 
Separated Porous Silica Films

Metastable phase separation in the 

SiO2-B2O3-Na2O system (mol%)

Ref: http://glassproperties.com/map.htm

Areas of immiscibility in the
SiO2-B2O3-Na2O system used to make 

Vycor and Pyrex
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Transparent template

Sodium Borosilicate glass
Phase separated 

spinodal decomposition

1) Sodium borate

2) Silica rich phases 
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Nanostructured Material

STEP II: Techniques to create nanostructured surfaces

Temp:

500 - 700 oC

The spinodal microstructure is 

determined by : 

● Heat treatment temperature & 

time

And, the final etched-out 

nanostructure controlled by:

● Etchant type, concentration & 

etch duration

Approach 1: Nanostructured Silica Films Cont.`d
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Longer the annealing time, larger the size of the phase separated film structure

Heat treatment temperature = 710 oC

Heat treatment time = 5 min

Heat treatment temperature = 710 oC

Heat treatment time = 120 min

Approach 1: Coating Engineering
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Approach 1: Coating Engineering Cont`d

Heat treatment temperature = 600 oC

Heat treatment time = 240 min

Heat treatment temperature = 700 oC

Heat treatment time = 12 min

LiNbO3

LiNbO3

200 nm

200 nm

200 nm

Coating

200 nm

Heat treatment temperature = 700 oC

Heat treatment time = 1 min

Heat treatment temperature = 700 oC

Heat treatment time = 12 min

Au/QCM

Au/QCM
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Lu et al J. Eur. Ceram. Soc. 2001

Approach 2: Phase Separated Metal-Oxide 

TiO2:Cu2O Nanocomposite Films

Exploits phase separation in oxide materials: a new composite based on TiO2-Cu2O

 Phase separation is driven by thermodynamic stability combined w/ insolubility between TiO2 & Cu2O

 Nanostructural transformation is governed by the minimization of the lattice misfit strain (12%) between 

TiO2 & Cu2O

 Material system is naturally abundant, non-toxic, inexpensive, chemically & environmentally stable 

TiO2:Cu2O/QCM

Color combined elemental map reveals nanoscale phase 

separation between TiO2 & Cu2O phases

EDX elemental map
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TiO2
Cu2O

TiO2:Cu2O

TiO2 Cu2O

TiO2:Cu2O

Au

Au

Au

Au

Au

Au

Cross-sectional Z-Contrast STEM & Integrated EELS Reveal 
Nanostructured Phase Separation in TiO2:Cu2O Composite

TiO2/QCM Cu2O/QCM TiO2:Cu2O/QCM
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Demonstrated low detection limits for CO2 & 
Humidity Sensing for TiO2:Cu2O Coated QCM

Chemistry (CO2) : 1-ethyl-3-methylimidazolium (EMIM) Chemistry (H2O): polyacrylamide (PAAm)

0.02 T (6.7% CO2 in Atm,
25 ppm)

0.13% RH
(0.03 T of H2O pressure)
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Approach 1: Nanostructured silica films

Exploits spinodal phase decomposition

in glass materials

Approach 2: Nanostructured TiO2-Cu2O films

Exploits control of materials phase

separation in metal oxide systems 

Integrated onto LiNbO3

SAW devices

Coating

QCM

Integrated onto LiNbO3

SAW devices

TiO2:Cu2OSilica

QCM

High Surface Area Porous Nanostructured 
Sensor Films: QCM & LiNbO3
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Tra

SAW Design (250 MHz)

Nanostructure film deposition through shadow mask

Sensor test module/Gas chamber

SAW schematic 
(double track)

Transducers Reflectors

Gas sensing test setup

Metal-oxide on LiNbO3 Silica on LiNbO3Shadow mask

Ref. Channel
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TiO2/Cu2O Film SiO2 Film

~20dB Drop in Signal 
Amplitude

No Difference in Signal 
Amplitude!

● Deposition process/methods did not seem to adversely affect SAW performance 

of transducers/reflectors that do not have film overlay

● Silica thin films show no affect on SAW device performance (Low Loss)

● TiO2:Cu2O films initially showed attenuation. Process has been optimized 

Influence of Film Morphology on SAW Performance

SAW device – No film overlay
SAW device – TiO2:Cu2O overlay

SAW device – No film overlay
SAW device – Silica overlay
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• Exposed sensor to 100% and 500 ppm (desired sensitivity) methane

• Sensor has reference (temp.) and sensing (methane) channel

 Sensing channel shows larger freq. shift than ref. channel when exposed to 100% methane

 For 500 ppm observed similar shift for both channels (likely dominated by temperature)  low 

sensitivity to methane

• Solution: Increase device frequency to increase the sensitivity (i.e., mass on surface)

 Design SAW devices for 915 MHz operation  predict 500-1000% increase in sensitivity

∆𝑓 = 𝑘1 + 𝑘2 𝑓0
2ℎ𝑝𝑓 − 𝑘2𝑓0

2ℎ
4𝜇′ 𝜆′ + 𝜇′

𝑣0
2 𝜆′ + 2𝜇′

CH4 Sensing Experiments w/250 MHz Device

100% methane

Mass loading Stress
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SAW Design (915 MHz)

● New test fixture for rapid testing

 Old design required wire 
bonding & adhesive 
bonding to PCB

 New fixture routes RF 
signal to pogo pins; chip is 
placed into chamber & 
pogo pins make direct 
connection

● Wide-band, multi-chip 
(reflector) design for improved 
SNR (pulse compression gain)

Shadow mask
(laser cut)

SAW die w/915 MHz devices 
(double track)

Sensor test module

Pogo pin connections
(no wire bonds)

Gas inlet

Gas outlet
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Initial CH4 Sensing Experiments w/915 MHz Device
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● For 500 ppm CH4, observed ~30 KHz shift for sensing channel

● Processing protocols of nanostructured films & sensing chemistry are being optimized

to achieve higher sensitivity
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Contact Information

Questions?

Tolga Aytug, PhD

aytugt@ornl.gov

(865) 574-6271
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State-of-the-art Technology – Siemens GAS-Guard℗ 8

Accurate and repeatable measurement 
of eight (8) critical fault gases

System Integration w/ high value assets
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► Substrate: YZ-LiNbO3

► SAW Velocity: 3488 m/s

► Wavelength (250MHz): 13.95 µm

◼ ¼ ∙ λ = 3.4875 µm

► Beamwidth: 50∙λ = 697.5 µm

► Transducer Electrode Pairs: 11 

◼ τ=44ns; NBW = 45 MHz

► Reflector Electrodes: 65

SAW Design Parameters (250 MHz)
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► SAW device can be split into 

multiple tracks

◼ E.g. reference and sensing track

Main Transit 
Reflections

Double Transit 
Reflections

Transducer S11 
Response

Reflector S11 
Response

Dual Channel SAW Device (1-Port) 
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► Embedded interrogation systems 

with Udoo x86

► Wireless SAW temperature sensor 

testing in anechoic chamber

► SAW sensor temperature cycling in 

environmental chamber

SAW Field Validation
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► Monopole, Yagi, and Patch Panel antennas tested

► Sensor can operate up to 5 meters (Limited by chamber length)

► Measurement precision down to 0.027°C observed

► Best performance observed with Patch Panel antenna

Anechoic Chamber Results
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TiO2/Cu2O Film SiO2 Film

Nanostructuring on SAW Reflectors


