Conclusive analysis & cause of the flyby anomaly Range proportional spectral shifts for general communication

V. Guruprasad

Inspired Research, New York http://www.inspiredresearch.com

2019-07-17

© 2019 V. Guruprasad

IEEE NAECON 2019

▲ロト ▲団 ト ▲目 ト ▲目 ト ● ● ● ●

1/20

Summary

- Popular context: Astrometric solar-system anomalies^[1]
 - Pioneer: $\Delta V \sim \dot{r} \approx -H_0 r$ at $r \geq 5 \text{ AU}$ (blueshift) SOLVED^[2]
 - Flyby: ΔV trajectory discontinuity at satellite range
 - Lunar orbit eccentricity growth: also \sim H_0 $^{[3]}$
 - Earth orbit radius growth: also \sim H_0
- Present work: conclusive solution of the flyby anomaly
 - All NASA-tracked flybys checked, fit to 1%, more issues found
 - Fit presence and absence, correlated to transponder
- Real motivation and result: wave theory+practice correction
 - Rewrite communication and radar: source range in all signals
 - · Rewrites physics and astrophysics since Kepler
 - Computation overlooked since Euler and d'Alembert
 - Needed extremely robust empirical validation

^[1]Anderson and Nieto 2009.

^[2]Turyshev et al. 2012.

[3]_.

^[3]The terrestrial reference frame is uncertain to about same order..Altamimi et al. 2016

IEEE NAECON 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Faithful led by the blind

• Fourier transform presumes clock rate stability

- Clock rate stability requires design and procedures
- But even HST calibration cycles only correct *cumulative* errors
 - No awareness of range proportional or scale drift rate errors
 - Best Allan deviations in any observations are $o(H_0)$
 - What if drift rate errors $\Leftrightarrow O(H_0r)$ shifts Hubble's law!
- Translational invariance is *selective*
 - If only phase can change, $d\psi(t)/dt = i\omega\psi$, so $\psi(t) = e^{i\omega t}$
 - Sinusoidal waves historically preconceived
 - For vibrational modes under static boundaries
 - Chirp transforms are known, what prevents their spectra?
 - Chirps are *translationally variant* ⇔ Hubble-like shifts
 - We don't need a contrived metric, any more than angels
- Translational invariance constrains analysis instead of physics
 - FM, Doppler rate = continuously varying frequency $\dot{\omega}$
 - Current *analyses* assume Fourier: $\dot{\omega} = 0$
 - The flyby anomaly is *nature* saying they are incomplete

Engineers need to pave the way

- Translational variance is fantastically useful^[4]
 - Spectrum no longer a limited, shared resource
 - Every receiver can be physically unjammable
 - Instant triangulation no need for range codes, many radars
- d'Alembert equation notoriously factors unconditionally
 - Wave equation admits (whole dimension of) expanding solutions
 - We just didn't have a way to observe, access them
 - Optical diffraction gratings, prisms are rigid \sim enforce invariance
- Spectral analysis and selection are macroscopic functions
 - Correspondence Principle is a Zeno's Paradox *and* a Red Herring
 - The kernel is always physical, macroscopic and continuously variable
 - Especially in radio receivers: local oscillator (LO)
- Chirp spectra are translationally variant
 - Components $\exp(i\omega_0 e^{\beta[t-\Delta t]}/\beta) \Leftrightarrow \text{shifts } \Delta \omega = -\omega \beta \Delta t$
 - Don't really depend on $r \Rightarrow$ wave notions are irrelevant!

^[4]Guruprasad 2005.

The representation defines component shifts, like an oblique coordinate grid.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity $\dot{\omega}$ unrepresentable vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with $\dot\omega\neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$

The representation defines component shifts, like an oblique coordinate grid.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity $\dot{\omega}$ unrepresentable vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with $\dot{\omega} \neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のの

The representation defines component shifts, like an oblique coordinate grid.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity $\dot{\omega}$ unrepresentable vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with $\dot{\omega} \neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$

<ロ> < (回) < (回) < (回) < (回) < (回) < (回) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) < ((0)) <

The representation defines component shifts, like an oblique coordinate grid. Any wave, hence also its components, are integrated only as they arrive.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity $\dot{\omega}$ unrepresentable vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with $\dot{\omega} \neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ◆ ℃

The representation defines component shifts, like an oblique coordinate grid. Any wave, hence also its components, are integrated only as they arrive.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity $\dot{\omega}$ unrepresentable vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with $\dot\omega\neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$

The representation defines component shifts, like an oblique coordinate grid. Any wave, hence also its components, are integrated only as they arrive. The views show 1:1 equivalence.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity *i* unrepresentable vanishes in ideal FT this is a power signal

Steady tone in chirp basis

- d'Alembert with $\dot\omega\neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$
- Inclined view with shifts

The representation defines component shifts, like an oblique coordinate grid. Any wave, hence also its components, are integrated only as they arrive. The views show 1:1 equivalence.

Any FM in Fourier basis

- Discontinuous in $\boldsymbol{\omega}$
- Pieces violate d'Alembert!
- Velocity *i* unrepresentable vanishes in ideal FT this is a power signal

Steady tone in chirp basis

- d'Alembert with $\dot\omega\neq 0$
- Zero Fourier amplitudes!
- Requires chirp basis
 - basis itself has velocity $\dot{\omega}$
- Inclined view with shifts
- A group under translations (so Fourier is degenerate)

The many challenges on the way

• Spectral connection to instrument scale variation was unclear

- Scale unit μ , target interval L, measure is L/μ A drift rate $\dot{\mu}$ must add $-\dot{\mu}.L/\mu^2 \equiv -\beta L$ to velocities But why would the virtual velocities have Doppler shifts?
- Time derivative of wavelength comb radar imaging^[5]
 - No fast continuously variable gratings for off-the-shelf optical test
 - Lacked "empirical authority" for confidence on chirp spectra
 - Made no sense to physics colleagues either (with Fourier view)
- Rigidity solvable in radio receivers, but
 - Analogue is still rigid hardware & digital sampling rejects chirps
 - Basic questions, besides time and cost, against experimenting: What β is critical, how long to ramp? (limits components) What signals to seek? Does it need "FM content"?
 - Fortuitously answered by NASA, US STRATCOM, and ESA

^[5]Guruprasad 2005.

Conclusion

Modern, non-phase lock receiver (after Cassini)^[6]

 $\int_{\mathcal{T}} \exp(i\omega_0 e^{\beta[t-r/c]}/\beta) \times \exp(-i\omega_{x0} e^{\beta't}/\beta') dt$

^[6]Chen et al. 2000; DeBoy et al. 2003.

© 2019 V. Guruprasad

IEEE NAECON 2019

▲ロト ▲団 ト ▲目 ト ▲目 ト ● ● ● ●

7/20

Modern, non-phase lock receiver (after Cassini)^[6]

 $\int_{\mathcal{T}} \exp(i\omega_0 e^{\beta[t-r/c]}/\beta) \times \exp(-i\omega_{x0} e^{\beta't}/\beta') dt$

^[6]Chen et al. 2000; DeBoy et al. 2003.

IEEE NAECON 2019

Transponder phase lock loop (Galileo, NEAR, Cassini)^[7]

 $\ensuremath{\left[7\right]}$ Mysoor, Perret, and Kermode 1991; Bokulic et al. 1998; Chen et al. 2000.

IEEE NAECON 2019

Transponder phase lock loop (Galileo, NEAR, Cassini)^[7]

• Red path: carrier phase-locked loop, teal path: signal

- Phase error value is typically digital using logic gates
- Analogue in time \Rightarrow phase error is detected continuously
- \Rightarrow resonators track each RF cycle
- \Rightarrow carrier Doppler, demodulated signal from chirp spectrum

 $\ensuremath{\left[7 \right]}$ Mysoor, Perret, and Kermode 1991; Bokulic et al. 1998; Chen et al. 2000.

・ロト ・母 ト ・目 ・ ・ 目 ・ うへの

Opportunity in the flyby data

• The distinct circumstances in Earth flybys (and NASA)

- Sustained Doppler rate $\beta > 0$ in approach, $\beta < 0$ in retreat
- Tracked by 2-way Doppler of telemetry carrier Requires dedicated DSN (or ESTRACK) antennas Even geostationary satellites do not merit this
- Non-repeating and used for subsequent mission calibration so any lag or advance in Doppler stands out
- NASA started with phase lock transponder, and published data ESA only due to NASA role, no data for JAXA, other countries
- Signature of the chirp mode in the flyby data
 - SSN residuals fit range lags: $\Delta r = -v\Delta t$, $\Delta t = r/c$
 - Anomaly fits velocity lags: $\Delta v = -a\Delta t$, $a \equiv \dot{v}$
 - Velocity lags $\Delta v \Leftrightarrow$ Doppler lags $\Delta \omega = \dot{\omega} \Delta t$
 - Identical in sign, magnitude to CWFM but in excess

The tracking and the anomaly

- Deep space tracking using telemetry
 - PN codes (initial range) + Doppler integration (fine range)^[8]
 - Precise enough for general relativity tests^[9]
- Velocity discrepancies ΔV across gap in tracking^[10]
 - Galileo 1990: 4.3 $\mathrm{mm/s}$
 - NEAR 1998: 13.46 mm/s
 - Rosetta 2005: 3.6 mm/s^[11] Reported as 1.82, tracking resumed *before* perigee^[12]
- Limitations of the JPL definition
 - If there is no gap, ΔV cannot manifest (Cassini)
 - Trajectory can be dynamically wrong even with $\Delta V = 0$
 - ΔV is a computed error \Rightarrow real force/energy at orbit range

^[8] Anderson, L	aing, et al. 2002.		
^[9] Bender and	Vincent 1989.		
^[10] Antreasian a	nd Guinn 1998; Anderson, Campt	pell, et al. 2008.	
^[11] Morley and	Budnik 2006.		
^[12] T Morley (2	017). Pvt comm.		
Guruprasad	IEEE NAECON 2019	▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの	10/20

Analysis

Conclusion

Other symptoms

- Perigee shift relative to target at last control manoeuvre
 - NEAR: +6.8 km change in altitude (NASA press releases)
 - Rosetta 2005: $-340 \text{ ms} (\text{advance}, \sim 10.2 \text{ km})$ Compare: Juno: $+0.26 \text{ ms}^{[13][14]}$
- Large residual swings
 - Around perigee (Galileo^[15], Rosetta^[16])
 - Large diurnal oscillations post-perigee (NEAR^{[11][17]})
- Large range errors against SSN radars (NEAR^[11], Galileo^[18])
 - Up to 1 ${\rm km} \sim 100 {\times} {\rm precision}, \gg 5 \sigma^{[19]}$
 - Yet JPL thought it was "noise" [14], buried in AIAA 1998!

```
      [13] Thompson et al. 2014.

      [14] P F Thompson (2019). Pvt comm.

      [15] Antreasian and Guinn 1998.

      [16] Morley and Budnik 2006.

      [17] Anderson, Campbell, et al. 2008.

      [18] J K Campbell (2015-). Pvt comm.

      [19] P G Antreasian (2017). Pvt comm.

      Guruprasad
      IEEE NAECON 2019
```

NEAR's SSN radar range residuals: errors Δr

- Against integrated telemetry Doppler range
 - Too systematic for circuit fluctuations: $R/S > 5\sigma$
 - Too *large* for random error: 40ϵ Altair, 140ϵ Millstone
 - Too *large* for transponder latency: error $\Delta t = 60-140 \text{ ms}$
- $\Delta t =$ one-way "light times" ^a r/c, whence $\Delta v = -ar/c$

^aGuruprasad 2015a.

NEAR's SSN radar range residuals: the choices

- Physicists' interpretations
 - Blame radar (JPL physics) \Rightarrow DoD's SSN superluminal at $2c^a$
 - Source-dependent *c* (EPL comment) ~ telemetry at *c*/2
- Concede JPL's graph *already* shows $\Delta \omega = -\omega Hr$ in Doppler
 - Hubble's law with $H = \beta/c$, β : fractional Doppler rate $\sim 10^{-6}/{
 m s}$

^aSince Δt is the full one-way light time

NEAR perfect fit: $\Delta v \simeq \Delta V$ – post-encounter (Canberra)

- $\Delta v \equiv -ar/c = 11.13~{
 m mm/s}$ at AOS $\sim 20\%$ of anomaly^a
- Correlation with $\Delta v \Rightarrow JPL$'s direction prediction issue^b
- Impossible growth in v (range rate from JPL Horizons)

^aGuruprasad 2015a.

^bAnderson, Campbell, et al. 2008.

NEAR perfect fit: $\Delta v \simeq \Delta V$ – pre-encounter (Goldstone)

- Balance of Δv found at LOS
- Total $\Delta v = 11.13 + 2.51 = 13.64 \text{ mm/s}$
- Result is 1.3% of $\Delta V = 13.46 \text{ mm/s}^{a}$

^aAnderson, Campbell, et al. 2008.

Analysis

Conclusion

Explaining Rosetta 2005 residuals

- Large residuals \Rightarrow Doppler not following range rate
- Consistency with velocity lags <= residuals follow acceleration
- Broken residual tracks: fresh acquisition every day
- New Norcia track consistently follows acceleration

(c) 2019 V. Guruprasad

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Analysis

Conclusion

Explaining Rosetta 2005 residuals

- Large residuals \Rightarrow Doppler not following range rate
- Consistency with velocity lags \Leftarrow residuals follow acceleration
- Broken residual tracks: fresh acquisition every day
- Goldstone tracks acceleration till 05, even "outgassing" on 01

(c) 2019 V. Guruprasad

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2009 : both LOS, AOS at New Norcia

- $\Delta v_{AOS} pprox -530 \ {
 m mm/s} \sim 15 \ {
 m Hz}$ way outside loop filter band
- $\Delta v_{LOS} = 0.0395 \text{ mm/s} \sim 1 \text{ mHz}$ indistinguishably small
- Consistent with no anomaly

2007 : LOS at New Norcia, AOS at Goldstone

- $\Delta v_{AOS} pprox -514 \ {
 m mm/s} \sim 14 \ {
 m Hz}$ way outside loop filter band
- $\Delta v_{LOS} = -41.76 \ \mathrm{mm/s} \sim 1.2 \ \mathrm{Hz}$ also outside loop band
- New Norcia likely acquired Fourier mode much earlier

The cold case of Galileo 1990^{[20][21]}

- Goldstone residuals follow velocity late on the 9th \Rightarrow unlikely to have caused anomaly
- Canberra residuals follow acceleration around C/A \Rightarrow most likely cause of anomaly
- Start/end times too imprecise this close to C/A for Δv - ΔV fit

IEEE NAECON 2019

 ^[20] Antreasian and Guinn 1998.
 [21] P G Antreasian (2017). Pvt comm.

Continuously tracked: Cassini^[22]

• Continuously tracked by multiple stations (watched pot!)

- \Rightarrow dragging even by large Δv gets averaged out
- $\Rightarrow\,$ spikes could be chirp lock at AOS, but too small
- No tracking gap \Rightarrow no possibility of ΔV discontinuity

^[22]Guman et al. 2000.

- Juno residuals (above) comparable to Rosetta's
 - But entirely consistent with multi-path reflections under spin
 - "Deleted data" tracks excluded for very large spin issues
 - No anomaly consistent with non-phase locking:
 - Tracks not overlapping but agree on trajectory: no Δv
 - Perigee shift: +0.26 ms, versus -340 ms for Rosetta

• MESSENGER residuals \sim Cassini's: 0.15 $\rm mHz$ – no anomaly

^[23]Thompson et al. 2014. ^[24]J K Campbell (2015-). Pvt comm.

IEEE NAECON 2019

Onward and outward

- We are *truly* done with the flyby anomaly
 - All flybys analyzed where anomaly details and data available
 - Only exclusions all non-NASA and Galileo 1992 (uncertain anomaly, no AOS/LOS details) Stardust, DI/EPOXI^[25], OSIRIS-REx (no anomaly, details)
 - Requested and overseen by J K Campbell of "JPL anomaly team" Team noted consistent absence of anomaly since Cassini Campbell noticed correlation with transponder change
- Chirp mode evidence is most robust observations of mankind
 - Trajectory fits verify consistency ΔV fit meaningless beyond 1%
 - Direct evidence is NEAR's SSN residuals
 - Millstone data is 100σ : overall 5σ ignoring independence
 - Astrophysics, particle physics less robust on Allan deviations
- Chirp mode receivers would be simple, immensely significant
 - Sawtooth FM of LO^[26] POC challenge is LO signal conditioning

[25] Bhaskaran et al. 2011.
 [26] Guruprasad 2015b.

References

- Anderson, J D and Nieto, M M (2009). "Astrometric Solar-System Anomalies". In: Proc IAU Symp No. 261. arXiv: 0907.2469v2.
- Turyshev, S G et al. (2012). "Support for the thermal origin of the Pioneer anomaly". In: *Phys Rev Lett* 108 (24). arXiv: 1204.2507v1.
- Altamimi, Z et al. (2016). "ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions". In: J Geophy Res: Solid Earth 121.8, pp. 6109–6131.
- Guruprasad, V (2005). "A wave effect enabling universal frequency scaling, monostatic passive radar, incoherent aperture synthesis, and general immunity to jamming and interference". In: MILCOM (classified session). arXiv: physics/0812.2652v1.
- Mysoor, N R, Perret, J D, and Kermode, A W (1991). Design concepts and performance of NASA X-Band (7162 MHx/8415 MHz) Transponder for Deep-space Spacecraft Applications. Tech. rep. 42-104. Descanso NASA.
- Bokulic, R S et al. (1998). "The NEAR spacecraft RF telecommunication system". In: JHU APL Tech Digest 19.2.
- Chen, C-C et al. (2000). Small Deep Space Transponder (SDST) DS1 Technological Validation Report. Tech. rep. Descanso NASA.
- DeBoy, C C et al. (2003). "The RF Telecommunications System for the New Horizons Mission to Pluto". In: IEEEAC. paper 1369.
- Anderson, J D, Laing, P A, et al. (2002). "Study of the anomalous acceleration of Pioneer 10 and 11". In: Phys Rev D 65, pp. 082004/1–50. arXiv: gr-qc/0104064.
- Bender, P L and Vincent, M A (1989). Small Mercury Relativity Orbiter. Tech. rep. N90-19940 12-90. NASA.
- Antreasian, P G and Guinn, J R (1998). "Investigations into the unexpected Delta-V increases during the earth gravity assists of Galileo and NEAR". In: AIAA. 98-4287.
- Anderson, J D, Campbell, J K, et al. (2008). "Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth". In: PRL 100.9, p. 091102.
- Morley, T and Budnik, F (2006). "Rosetta Navigation at its First Earth-Swingby". In: 19th Intl Symp Space Flight Dynamics. ISTS 2006-d-52.
- Thompson, P F et al. (2014). "Reconstruction of the Earth flyby by the Juno spacecraft". In: AAS. 14-435.
- Guruprasad, V (2015a). "Observational evidence for travelling wave modes bearing distance proportional shifts".
- In: EPL 110.5, p. 54001. arXiv: 1507.08222. URL: http://stacks.iop.org/0295-5075/110/i=5/a=54001.
- Guman, M D et al. (2000). "Cassini orbit determination from first Venus flyby to Earth flyby". In: AAS. 00-168. Bhaskaran, S et al. (2011). "Navigation of the EPOXI spacecraft to comet Hartley 2". In: AAS. 11-486.

Guruprasad, V (2015b). "Chirp travelling waves and spectra". In: PCT/US2015/015857.

Pub. No. WO/2016/099590 published 2016-06-23.