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What’s so special? Why all this trouble?

� Tricky to detect

� Hard to track and quantify

� Hides and reappears

� Enables “extra” mitigation
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Part I: Many challenges and misconceptions

Outlier noise: Ubiquitous but often elusive

Outlier noise: Why care? What works?

What hides outlier noise?
#1 – General filtering effects
#2 – “Outliers” vs “outlier noise” ambiguity
#3 – Insufficient observation bandwidth
#4 – Spectral ambiguity
#5 – Ambiguity of amplitude densities
#6 – Wide range of powers across spectrum

Outlier noise: Observation vs. mitigation

Complex signal+noise compositions
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Part II: Methodology and tools for outlier noise mitigation

ADiC components and their implementation
ADiC as main building block
Basic ADiC structure
QTFs for robust range
Much better way: Feedback-based ADiC

ADiC-based outlier noise filtering
Spectral reshaping by ADiC and efecto cucaracha
CAF: Removing outlier noise while preserving signal of interest
CAF vs linear: Effect on channel capacity
“No harm” (default) CAF configurations

Analog vs digital
Digital: Where to get bandwidth?
Addressing complex interference scenarios
Practical configurations: CAF for chirp signals
Practical configurations: CAF for OFDM
CAF for clipping distortions
Designing development & testing platform

Broader picture
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Part I

Many challenges and misconceptions
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Outlier noise: Ubiquitous but often elusive

“It isn’t that they cannot find the solution. It is that

they cannot see the problem.”

– G.K. Chesterton, The Scandal of Father Brown (1933)
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Outlier noise’s origins: “Events” separated by “inactivity”

E.g. coupled from external sources. . .

. . . or generated by intermittent nonlinear distortions of signal itself
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Outlier noise’s origins: “Events” separated by “inactivity”

Source of “hidden” outlier noise that disappears and reappears due to

various filtering effects (including fading and multipath):

I Analog domain filtering: Combinations of signal and its

derivatives and antiderivatives (e.g. convolution) of various orders

I Digital domain filtering: Combination of differencing and

summation operations
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Outlier noise’s origins: “Events” separated by “inactivity”
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Outlier noise: Ubiquitous but often elusive

Comes from many natural and technogenic (man-made) sources

E.g. impulsive noise, shot noise, transient noise, sparse noise, platform noise,
burst noise, popcorn noise, bi-stable noise, crackling noise, clicks & pops, etc.

It changes “looks” or hides and reappears as it propagates
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Technogenic noise is ubiquitous . . .

E.g. close physical proximity of multiple coexisting devices,

high-density digital circuits and multiple transmitters and receivers

I E.g. smartphones with

Wi-Fi, Bluetooth, GPS;

multiple protocols and

frequency bands

I Cellular voice

I Cellular data

I Bluetooth

I WiFi

I GPS

I Display

I Speaker

I Microphone

I Power supplies

I Digital clocks

I Sensors

I Buses

Also: Electronics equipment in home and office; dense urban and

industrial environment; increasingly crowded wireless spectrum

(e.g. radar-communications, radar-radar, narrowband/UWB, etc.)
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. . . yet its omnipresence and impact remain underappreciated
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Outlier noise is omnipresent,

yet only small fraction is apparent . . .
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. . . and how we treat problem is still in Dark Ages
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Outlier noise: Why care? What works?
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Why care? What works?

In-band outlier noise can be removed in real time

Nonlinear filters:
I Disproportionately affect different temporal and/or amplitude structures

I Enable mitigation levels unattainable by linear filtering (e.g. in signal band)

Toy example: ADiC-based filtering suppresses in-band impulsive interference
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Toy example

CLICK ON FILTER SYMBOLS FOR AUDIO 17/129



Why care? What works?

CLICK ON FIGURE BELOW TO PLAY MOVIE
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Even crude intermittently nonlinear filters can help

Bench setup

Mitigation of WiFi/Bluetooth interference observed at IF in Garmin GPS-12

Mitigation of EMI from terrestrial communications: Test in RF anechoic chamber of GPS company
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Even crude intermittently nonlinear filters can help

Mitigation of 2.4 GHz WiFi interference with 1.95 GHz HSDPA

HSDPA data throughput at various signal levels with and without strong WiFi
interference of constant power, and with and without SPART mitigation

Adapted from: “Impulsive interference in communication channels and its mitigation by SPART and
other nonlinear filters,” EURASIP J. Adv. Signal Process., vol. 2012, no. 79, 2012
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Why care? What works? – Fact or fiction?

7 “We can always directly observe outlier noise in time domain”

7 “We can observe outlier noise in power spectra/spectrograms”

7 “We can always deduce presence of outlier noise from amplitude density

observations”

3 Yet outlier noise can be mitigated even when it’s not

directly observed!
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WHY CARE? WHAT WORKS?

• Enables in-band real-time mitigation

• Utilizing intermittently nonlinear filters
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What hides outlier noise?

“If I don’t see it then I can ignore it!”
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#1 – General filtering effects
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#2 – “Outliers” vs “outlier noise” ambiguity
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#2 – “Outliers” vs “outlier noise” ambiguity: Clipping
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#2 – “Outliers” vs “outlier noise” ambiguity

Removing “outliers” degrades baseband signal

We want to remove outlier noise!
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What hides outlier noise?
#3 – Insufficient observation bandwidth
#4 – Spectral ambiguity

Can it be removable outlier noise instead?
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Wide-bandwidth time-domain observations are required!
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What hides outlier noise?
#1 – General filtering effects #4 – Spectral ambiguity

30/129



What hides outlier noise?

#4 – Spectral ambiguity
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What hides outlier noise?

#4 – Spectral ambiguity
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And how about spectrograms?

#4 – Spectral ambiguity
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What hides outlier noise?
#5 – Ambiguity of amplitude densities
#6 – Wide range of powers across spectrum
E.g. for bi-stable process or two-level PWM:
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What hides outlier noise?
#5 – Ambiguity of amplitude densities
#6 – Wide range of powers across spectrum

Bandwidth itself is not enough!

35/129



What hides outlier noise?
#6 – Wide range of powers across spectrum
E.g. for strong adjacent-channel interference:

Is there removable outlier noise affecting baseband?
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WHAT HIDES OUTLIER NOISE?

• Ambiguous and elusive nature

• Inadequacy of tools used for its observation

and/or quantification
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What hides outlier noise?
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What hides outlier noise?
#3 – Insufficient observation bandwidth (e.g. below “pileup threshold”)

Time × bandwidth is constant
=⇒ Definition of “local” depends on bandwidth

Reduction in bandwidth “hides” outlier noise
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What hides outlier noise?
#3 – Insufficient observation bandwidth
Even above pileup threshold:

Relative “tails shortening” of noise’s amplitude density ∝ ∆Bα, 0 < α ≤ 1
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What hides outlier noise?
#3 – Insufficient observation bandwidth: High rate of outlier-generating events
E.g. filtered (w/ 2nd order Bessel) random noise becomes Gaussian at high rate:

λc is bandwidth B0 of 2nd order Bessel filter divided by Gaussian time-bandwidth product: λc ≈ 2.27B0
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What hides outlier noise?
#3 – Insufficient observation bandwidth: High rate of outlier-generating events
Same for “periodic” Gaussian burst noise with 20% duty cycle:
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High rate of outlier-generating events – Experimental evidence

Hardware setup

Adapted from: ”Impulsive interference in communication channels and its mitigation by SPART
and other nonlinear filters,” EURASIP J. Adv. Signal Process., vol. 2012, no. 79, 2012
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What hides outlier noise?

But what about amplitude densities?
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Bandwidth is still important!

Less wiggle room:
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What hides outlier noise?
#5 – Ambiguity of amplitude densities
E.g. for two identical Gaussian mixture distributions:

E.g. radar, communications, radiation detection, ToA applications, etc.
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Bandwidth is still important!
#5 – Ambiguity of amplitude densities
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What hides outlier noise?
#6 – Wide range of powers across spectrum
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#6 – Wide range of powers across spectrum
Can we still observe outlier noise?
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#6 – Wide range of powers across spectrum
Can we still observe outlier noise?

50/129



WHAT HIDES OUTLIER NOISE?

• Insufficient observation bandwidth

• Presence of other signals

51/129



Outlier noise: Observation vs. mitigation
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Outlier noise: Observation vs. mitigation

Reducing bandwidth “hides” outlier noise:

Can we capitalize on pileup effect and/or amplitude-bandwidth proportionality?
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Outlier noise: Observation vs. mitigation
Observing outlier noise in “difference signal”:
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“Excess band” for difference signal

Use front-end filter with small time-bandwidth product for higher selectivity
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Effect of “excess bandwidth” on excess band selectivity
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“Peakedness” as indicator of mitigation potential

In units of “decibels relative to Gaussian” (dBG):

KdBG(x) = 10 lg

[
〈(x−〈x〉)4〉

3〈(x−〈x〉)2〉2
]

– kurtosis in relation to kurtosis of Gaussian (aka normal) distribution

E.g. for thermal+Poisson noise in different excess bands:

“Pileup rates” and “mitigable SNRs” are lower with less excess bandwidth
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Outlier noise: Observation vs. mitigation

But what to do with outlier noise component affecting baseband?

Bandwidth itself is not enough!
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Outlier noise: Observation vs. mitigation

Excess-band observation

yet

in-band mitigation
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Outlier noise: Observation vs. mitigation

E.g. for intermittent nonlinear distortions (“clipping”) of passband signal:
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Outlier noise: Observation vs. mitigation

E.g. for clipping distortions:
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HOW TO OBSERVE OUTLIER NOISE?

• Utilize excess band

• Block those signals that obscure
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Complex signal+noise compositions
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Complex signal+noise compositions

64/129



Complex signal+noise compositions: Deconstruction
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Complex signal+noise compositions

1. Mitigate wideband noise outliers first

– before bandwidth reduction

2. Remove other wideband interference outside of signal’s band

– using linear filter(s)

3. Reduce narrow-band outliers

– as appropriate from a priori knowledge of signal of interest’s structure
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What’s so special about outlier noise/interference?

� Tricky to detect

� Hard to track and quantify

� Hides and reappears

� Enables “extra” mitigation
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Part II

Methodology and tools for outlier noise
mitigation
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Part II: Methodology and tools for outlier noise mitigation

ADiC components and their implementation
ADiC as main building block
Basic ADiC structure
QTFs for robust range
Much better way: Feedback-based ADiC

ADiC-based outlier noise filtering
Spectral reshaping by ADiC and efecto cucaracha
CAF: Removing outlier noise while preserving signal of interest
CAF vs linear: Effect on channel capacity
“No harm” (default) CAF configurations

Analog vs digital
Digital: Where to get bandwidth?
Addressing complex interference scenarios
Practical configurations: CAF for chirp signals
Practical configurations: CAF for OFDM
CAF for clipping distortions
Designing development & testing platform

Broader picture
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ADiC components and their implementation
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Analog Differential Clipper (ADiC) as main building block

Removing outlier noise while preserving signal of interest:
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ADiC’s basic function
Do both – set range and remove outliers – when noise dominates

– Continuous-time (“analog”) filtering akin to digital Hampel filtering

Digital ADiC is only O(1) per output value in both time and storage
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Basic ADiC structure
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Quantile Tracking Filters (QTFs) for robust range/mid-range

E.g. [α−, α+] =
[
Q[1]−β

(
Q[3]−Q[1]

)
, Q[3]+β

(
Q[3]−Q[1]

)]
– Tukey’s fences

For mid-range, e.g., Trimean Tracking Filter (TTF) can be used:

(Q[1] + w Q[2] + Q[3])/(w + 2), w ≥ 0

In practice, finite-gain comparators should be used,
and/or small hysteresis should be added
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QTFs for robust fences/range and mid-range
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Basic ADiC structure
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Basic ADiC structure

Illustrative signal traces from LTspice simulation of simple ADiC circuit
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Much better way: Feedback-based ADiC

ADiC replaces outliers with χ(t), otherwise does not affect input signal

78/129



ADiC vs Hampel filter

Feedback-based ADiC replacing outliers with DCL χ(t)

Hampel filter replacing outliers with running median

Hampel filter is O (TFs log(TFs)) per output value in time, and O(TFs) in storage
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BASIC TOOLS

• QTFs for range/mid-range

• Depreciators (e.g. blankers) for mitigation

• Feedback arrangements for enhancement
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ADiC-based outlier noise filtering

81/129



Spectral inversion by ADiC
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Capitalizing on spectral reshaping: Efecto cucaracha

�



�
	Beware of spectrally-shaped outlier noise
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Capitalizing on spectral reshaping: Efecto cucaracha
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How to use spectral reshaping by ADiC?

E.g. to enable mitigation at high SNRs for signal in passband:
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Removing outlier noise while preserving signal of interest

Outlier noise mitigation at high SNRs for signal in passband:
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CAF: Removing outlier noise while preserving signal of interest

ADiC-based outlier noise removal from band-limited signals:
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Removing outlier noise while preserving signal of interest

ADiC-based outlier noise removal from band-limited signals:
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Removing outlier noise while preserving signal of interest
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CAF vs linear: Effect on channel capacity

Simulation setup:

E.g. noise after Bessel for λ = λc/10 and 0 dB outlier-to-thermal noise powers:
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CAF vs linear: Channel capacity under impulsive noise

For Poisson noise with default (constant) set of ADiC parameters:
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CAF vs linear: Channel capacity under outlier noise

Same default ADiC parameters for periodic Gaussian bursts with 10% duty cycle:
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CAF vs linear: Channel capacity under outlier noise

Or for λ = λc/10 and different duty cycles:
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“No harm” (default) CAF configurations

Why isn’t nonlinear filtering more commonly used?

I Can cause harm in complex, highly nonstationary interference scenarios

I Leading to distortions, instabilities, “cockroach effect” . . .

I “Tuning” takes time and resources

CAFs enable default “no harm” nonlinear filtering

E.g. in mobile and cognitive communication systems

I where transmitter positions, powers, signal waveforms, and/or spectrum

allocations vary dynamically

I + fading and multipath effects
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BASIC METHODOLOGY

• Use complementary ADiC filtering
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Analog vs digital
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Analog vs digital: Sufficiently high sampling rate is needed for digital

For numerical implementations:

I Use finite-difference approximations of analog operations
– differentiation, antidifferentiation, and convolution

I Employ IIR filters as needed for real-time processing
– to reduce computations and memory requirements

I Trade amplitude resolution for higher sampling rate
– before final decimation
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Digital: Where to get bandwidth?
E.g. for inherently high oversampling rate of ∆Σ ADC:

E.g. 20 MHz clock, 100 kS/s output, 500 kHz bandwidth of wideband digital IIR filter . . .

We can get creative with wideband “front-end” filters
E.g. combine responses of analog 2nd order antialiasing and digital wideband 2nd order IIR

for wideband 4th order Bessel-Thomson filter
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Addressing various “hidden interference” scenarios

General outline:

E.g. for strong adjacent channel interference we can use
bandstop g(t)+baseband w(t) or, alternatively, “baseband+bandpass” w(t)

'

&

$

%

In special case of narrow-band outlier interference
(e.g. intentionally confined to signal’s band)

we can reduce bandwidth of w(t) to small fraction of signal’s bandwidth,
or set w(t) to zero – Akin to conventional “blanking” of outliers
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Toy example

CLICK ON FILTER SYMBOLS FOR AUDIO 100/129



Toy audible demo

CLICK ON FIGURE BELOW TO PLAY MOVIE
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Addressing various “hidden interference” scenarios

E.g. spectral reshaping for adjacent channel interference:
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Impulsive noise with strong adjacent channel interference
Example: More than ×2.5 channel capacity increase in comparison with linear filtering
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Impulsive noise with strong adjacent channel interference
Channel capacities for ADiC-based filter w/ and w/o front-end bandstop:

B0 baseband, 3.5B0-4.5B0 adjacent, 30 dB adjacent/baseband;

Poisson noise, default ADiC parameters
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Addressing “special” interference scenarios

E.g. in special case of same spectral band for signal and impulsive interference:

Without excess bandwidth, “pileup rates” and “mitigable SNRs” are much lower
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ADiC vs linear: Channel capacity in “shared band” case

Gaussian signal, narrow-band Poisson impulsive noise,
λ0 = 2.27B0, default ADiC parameters:

Performance can be enhanced by optimizing ADiC parameters for particular scenarios
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Addressing various “hidden interference” scenarios

1. Employ wideband filter(s) ahead of CAF to enhance outliers in signal’s band

2. Use CAF to mitigate outlier noise before final digital filtering

3. Modify, if needed, output digital filter to compensate for wideband filter(s)

Example: ∆Σ ADC with ADiC-based decimation for strong adjacent channel interference

High oversampling rate allows use of tunable wideband “spectral reshaping”
linear filters in combination with ADiC-based filtering

to achieve interference mitigation levels unattainable by linear filtering alone
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DIGITAL METHODOLOGY

• Oversample ⇒ Wider excess band

• Trade amplitude for time resolution

• Use front-end filters to manage excess band
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Practical configurations: CAF for chirp

1. Front-end filter with wide bandwidth and small time-bandwidth product

2. Stopband [fc/5, fc] reduces average slew rate of linear chirp by about order
of magnitude
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Practical configurations: CAF for chirp
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Practical configurations: CAF for chirp

CLICK ON FILTER SYMBOLS FOR TOY AUDIBLE ILLUSTRATION 111/129



Practical configurations: CAF for OFDM

OFDM signal and noise traces at onset of outlier interference mitigability:
Further increase in power of outlier component results in significantly larger relative

improvement in signal quality
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Practical configurations: CAF for OFDM

For “bursty” and high-crest-factor signals
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Practical configurations: CAF for OFDM

QTF circuit for gain control

OFDM signal is not being clipped, while excessively strong outliers are limited to ±Vc
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OFDM: Poisson noise with normally distributed amplitudes

CAF-based filtering following analog clipper noticeably increases effectiveness of
mitigation, especially for high SNRs and event occurrence rates
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OFDM: Periodic Gaussian bursts with 10% duty cycle

CAF-based filtering following analog clipper significantly further improves signal quality
and extends mitigability, but its effectiveness is no longer monotonic with respect to

outlier occurrence rates (since burst duration is inversely proportional to rate)
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OFDM: Burst noise with λ = λc/20 and different duty cycles

For bursts with duty cycles larger than 50% CAF-based filtering with default
parameters becomes ineffective

117/129



PRACTICAL IMPLEMENTATIONS

• Co-design antialiasing and pre-CAF filters

• Use analog front-end clipper (e.g. combined

with QTF-based AGC)
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CAF for clipping distortions: Toy example
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CAF for clipping distortions: Toy example
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Practical configurations: CAF for OFDM

Mitigating clipping distortions
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Practical configurations: CAF for OFDM

Mitigating clipping distortions

122/129



IMD is part of

mitigable outlier interference
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Designing development & testing platform
Early prototype of development board incorporating ADiC filtering into ∆Σ ADC

I 1-bit isolated second-order ∆Σ modulator AD7403

I Filters implemented in FPGA on NI sbRIO-9637 (LabVIEW)

I Mostly for real-time audio range demonstrations and up to 500 kHz output bandwidth

I “Effectively analog” MATLAB simulation tools
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Designing development & testing platform

Next steps:

I Application-specific setups

I “Effectively analog” MATLAB simulation tools in parallel
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Broader picture
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Short-term development goals

1. Address complex practical interference scenarios

2. Achieve real-time mitigation levels unattainable by linear filtering

3. Ensure compatibility with existing systems & mitigation techniques

4. Facilitate various spectrum sharing & coexistence applications

5. Apply to RF/acoustic battlefield communications and radar/sonar
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Broader picture

ADiC-based filtering:
I Is intended as “first line of defense” against interference

– can be used in addition or as low-cost alternative to other interference mitigation methods

– “blind” yet adaptable to nonstationary signal & noise conditions

I Mitigates various types of co-site interference and/or platform noise

– e.g. noise generated by on-board digital circuits, clocks, buses, and switching power supplies

I Addresses various spectrum sharing & coexistence applications

– e.g. radar-communications, radar-radar, narrowband/UWB, etc.

– including dual function systems (e.g. radar/comms as mutual signals of opportunity)

I Can benefit various other military, scientific, industrial and consumer systems

– e.g. sensors/sensor networks and coherent imaging systems

– auditory tactical communications (e.g. in military ground combat applications)

– radiation detection, powerline communications, navigation & ToA techniques

I Allows simple analog and/or real time digital implementations

– can be integrated into and manufactured as IC components for use in different products

– e.g. as A/D converters with incorporated interference suppression
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A/D with incorporated interference

suppression
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Appendices
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