High Power Density AC-DC/ DC-DC/ DC-AC Conversion Techniques

7 - 8 DECEMBER 2020

Technical Co-Sponsor:

Supported by:

Presented by HJ Chiu Dean, Office of Industry-academia Collaboration National Taiwan University of Science and Technology Dec. 07, 2020 @ IEEE PECon in Malaysia

National Taiwan University of Science and Technology

Xi-men-ding Shopping District

Taipei Main Station

Presidential Office Building

Da-dao-cheng Wharf Taipei Songshan Airport

- Located in the most well-known university area in Taipei
- Easily accessed by Metro Rapid Transit and buses
- 10 minutes away from downtown area

t Village Ma

Taipei Arena

New Life Square Shopping District

Sun Yat-sen Memorial

Eastern District of Taipei

World University Rankings

Center for Power Electronic Technologies

Research Topics

TAIWAN TECH

Switching Power Supplies

- --Adaptor
- --PC Power
- --TV Power
- --Server Power

Renewable Energy

- --Solar Power
- --Fuel Cell

Lighting Applications

- --LED
- --HID
- --Fluorescent

Design Projects

- Funding over US\$1,000,000/year supported by industry
- IC vendors: ST, TI, Infineon, ON semiconductor
- Power supply manufacturers: Delta, Lite-ON, FSP, AcBel, Meanwell
- System manufacturers: Chroma, ASUS, Gigabyte

Achievements & Honors

Grand Prize, US\$10,000

Grand Prize, US\$10,000

2013 International Future Energy Challenge (IEEE IFEC) – Columbus, Ohio

TAIWAN TECH

Google Little Box Challenge Academic Award, US\$30,000

Primary Academic Institution	Principal Investigator
University of Colorado Boulder	Khurram K. Afridi
National Taiwan University of Science and Technology	<u>Huang-Jen Chiu</u>
Universidad Politécnica de Madrid	José A. Cobos
Texas A&M University	Prasad Enjeti
ETH Zürich	Johann W. Kolar
University of Bristol	Neville McNeill
Case Western Reserve University	Timothy Peshek
University of Illinois Urbana-Champaign	Robert Pilawa-Podgurski
University of Stuttgart	Jörg Roth-Stielow
Queensland University of Technology	Geoff Walker

Empower a Billion Lives (EBL) US\$4,000

Pacific Asia Regional Award

LITTLE BOX 📣 CHALLENC

「小盒子挑戰賽學術獎」三萬美元獎金

亞洲唯一入道國隊 台科大獲Google

8

P National Taiwan University of Science and Technology

International Academic Activities

P National Taiwan University of Science and Technology

Introduction to High Power Density Converters

TANNAN TECH

National Taiwan University of Science and Technology

Special thanks to Prof. Yu-Chen Liu, National I-Lan University

Demand for Higher Power Density and Higher Efficiency

Data Center Power Supplies

Renewable Energy Inverters

Electric Vehicles

Pational Taiwan University of Science and Technology

Design Example From CPES (VT)

600V GaN based Converter

The State-of-the-Art:

Frequency: 100 KHz Efficiency: 96% Power density: 30 W/in³

Objectives:

Frequency: >1MHz Efficiency: > 96% Power density: > 200W/in³ Design for Manufacturability

Wide Bandgap Devices

- Better reverse-recovery characteristics
- Faster switching speeds
- Can reduce switching and driver loss at MHz switching
- Used for high-efficiency high-power-density converters

High-Frequency Converters

✓ How high-frequency converters achieve high efficiency:

- Soft-Switching
- Commonly used topologies for high efficiency
 - Phase-Shifted Full Bridge (PSFB) Converter
 - LLC Resonant Converter

National Taiwan University of Science and Technology

High-Frequency Converters

✓ How high-frequency converters achieve high efficiency:

- Soft-Switching
- Commonly used topologies for high efficiency
 - Phase-Shifted Full Bridge (PSFB) Converter
 - LLC Resonant Converter

Disadvantages

- Lagging leg cannot achieve zero voltage switching (ZVS) at light-load conditions
- Additional magnetic components (inductor) needed at output

Phase Shift Full Bridge Converter

High-Frequency Converters

✓ How high-frequency converters achieve high efficiency:

- Soft-Switching
- Commonly used topologies for high efficiency
 - Phase-Shifted Full Bridge (PSFB) Converter
 - LLC Resonant Converter

Compared with PSFB Converter

- When resonant converter operates in LLC region, primary-side ZVS is independent of load
- Secondary-side ZCS achieved
- No extra magnetic components needed, in addition to transformer

High-Frequency LLC Converter

✓ 100-kHz LLC Converter

Specifications and Parameters

Parameter	Value	
Input Voltage	380 V	
Output Voltage	12 V	
Output Power	1 kW	
Device	Serial number	
Primary -side MOSFET ($Q_1 \ Q_2$)	IPP60R099C7	
Secondary-side MOSFET ($Q_3 \ Q_4$)	BSC028N06NS	
Core of Transformer	PQ32/30 (Material: P47)	
Core of Resonant Inductor	PQI26/12 (Material: P47)	
Device	Value	
Turns Ratio	16	
Magnetizing Inductor (Lm)	140 µH	
Resonant Inductor (Lr)	25 µH	
Resonant Capacitor (C _r)	48.2 nF	
Output Capacitor (C _o)	5.96 mF	

High-Frequency LLC Converter

✓ 100-kHz LLC Converter Power Loss Analysis

Main losses are transformer copper loss and secondary-side switch conduction loss

High-Frequency LLC Converter

✓ 100-kHz LLC Converter Power Loss Analysis

- Main losses are transformer copper loss and secondary-side switch conduction loss
- Others include resonant inductor loss and driver loss

High-Frequency LLC Converter

\checkmark Pros and Cons increasing frequency to 1 MHz

- Advantage
 - <u>Reduce transformer size</u>
 - Use leakage inductance of transformer as resonant inductor
 - Small resonant inductance is very improves efficiency and decreases volume
- Disadvantage
 - <u>Core loss</u> and <u>switching loss</u> will increase

National Taiwan University of Science and Technology

High-Frequency LLC Converter

1-MHz LLC Converter Power Loss Analysis

- $V_{in} = 380 V, V_o = 12 V, P_o = 1 kW$
- Main losses are core loss and switching loss

High-Frequency LLC Converter

✓ Comparison of 1-MHz and 100-kHz LLC Converter

- At high frequency:
 - Core loss increased by 37.65 W
 - Switching loss increased by 2.05 W
 - Driver loss increased by 3.88 W

High-Frequency LLC Converter

✓ 1-MHz LLC Converter Optimization

- At high frequencies, optimization of the magnetic components and switching losses are critical
- Core loss increases with switching frequency, so a core material suitable for high frequency applications should be utilized
- AC resistance of the magnetic coil increases with frequency, which increases copper wire loss
- Even though zero voltage switching (ZVS) is achieved on switch turn on, there is still some turn-off loss and reverse-recovery loss
- Faster switches (wide bandgap devices) can be used for their faster switch-off time to further reduce losses

Magnetic Component Loss

✓ Transformer Loss

- Core Loss
 - Core Material, AC Flux Density, Frequency
- Copper Loss
 - **Copper thickness, MMF, Air Gap, Frequency**

Copper Loss: Resistive Loss

- ✓ Loss from DC Resistance
 - Related to wire length and cross-sectional area, does not depend on frequency
- ✓ Loss from AC Resistance
 - Related to switching frequency, magnetic field strength, and cross-sectional area
 - Skin effect: effect of eddy currents caused by current flow through the conductor itself
 - **Proximity effect:** effect of eddy currents caused by current flow through an adjacent conductor
 - Skin and proximity effect cause current to be unevenly distributed, increasing effective resistance
 - Using PCB traces reduces the skin effect since the thickness can be controlled
 - Thus, the proximity effect is the main source of loss in highfrequency transformers that use layer-stacked windings

Copper Loss: Skin Effect

Skin Effect Simulation using ANSYS Maxwell 2D

- **Comparing copper loss of litz wire and PCB traces**
- **Conditions: 5 A of current, same cross-sectional copper area** •

Copper Loss: Proximity Effect

Proximity effect simulation using ANSYS Maxwell 2D

- Transformer can be modeled in Maxwell 2D for the LLC resonant converter
- Copper losses can be compared for different windings

Copper Loss: Proximity Effect

✓ Proximity effect simulation using ANSYS Maxwell 2D

Case 1: Non-interleaved windings

At 100 kHz, 7.22 W of loss

At 1 MHz, 22 W of loss

Copper Loss: Proximity Effect

✓ Proximity effect simulation using ANSYS Maxwell 2D

Case 2: Partially-interleaved windings

At 100 kHz, 1 W of loss

At 1 MHz, 3 W of loss

Copper Loss: Proximity Effect

Proximity effect simulation using ANSYS Maxwell 2D

Case 3: Interleaved windings

At 100 kHz, 0.8 W of loss

At 1 MHz, 1.8 W of loss

Copper Loss: Proximity Effect

✓ Comparison Summary

- Losses for each winding structure are summarized in the table below
- AC resistance (R_{ac}) is much higher at higher frequencies than lower frequencies
- For transformer windings, if complete interleaving is not possible, partial interleaving can still greatly reduce copper loss
- At 1 MHz and higher, complete interleaving is most effective to reduce overall copper loss

Winding Structure	100 kHz	1 MHz
Non-Interleaved	7.22 W	22 W
Partial-Interleaved	1 W	3 W
Interleaved	0.8 W	1.8 W

Copper Loss: Fringing Effect

✓ Fringing Effect Basics

- In transformer applications, an air gap can be added to reduce the attenuation of inductance caused by high DC bias
- However, increasing the air gap also increases leakage flux
- Leakage flux through the conductor can cause eddy currents to generate hot spots and further losses

Copper Loss: Fringing Effect

Fringing effect simulation using ANSYS Maxwell 2D

- Transformer with air gap can be modeled in Maxwell 2D •
- Effects of different air gaps can be compared •
- Case 1: Litz Wire •

1.53 W

Adding a gap at any location increases losses by 2.5 to 3.7 times

National Taiwan University of Science and Technology

Copper Loss: Fringing Effect

✓ Fringing effect simulation using ANSYS Maxwell 2D

- Case 2: PCB Windings
 - > Adding a gap at any location increases losses by 1.6 to 2.58 times
 - Compared to litz wire, the PCB windings are less affected by the fringing effect

Power Loss Summary

✓ Transformer total loss

- For transformers operating at 1 MHz, <u>electromagnetic effects</u> and losses are amplified
- It is important to <u>design for reduced core and copper loss</u>
- Core Loss
 - Eddy Current Loss: Choose an appropriate core material for high switching frequency
 - <u>Hysteresis Loss</u>: Considering core loss at high frequency operation, B_{max} should be designed to be less than 1000 Gauss

Copper Loss

- **<u>Rdc Loss</u>**: Need to consider cross-sectional area and length
- Rac Loss
 - □ <u>Skin Effect Loss</u>: Choose an appropriate conductor thickness
 - □ **<u>Proximity Effect Loss</u>**: Reduce loss with interleaved windings
 - Fringing Effect Loss: Choose a proper air gap position and winding shape to reduce losses

Fractional-Turn Transformer Structure Analysis

- Specifications: V_{in} =380 V, V_o =12 V, P_o =1 kW, f_{sw} =1 MHz
- Find out the design of the best fractional-turn transformer turns ratio under this specification
- Only considers core loss and copper loss during analysis

- $N_t = 4$ yields the minimum transformer loss
- Transformer turns ratio is 4:0.25
 4 sets of center taps are required on the secondary side

Quarter-Turn Transformer Design

- Specifications: V_{in}=380 V, V_o=12 V
- Equivalent Turns ratio: 16:1
- Fractional-turn transformer's turns ratio: 4:0.25

Fractional-turn LLC converter

Transformer primary side wiring

Quarter-Turn Transformer Design

- ✓ The winding layers and SRs arrangement (SPPS)
 - □ The primary windings are the middle layers, and the center-tapped secondary windings are the top/bottom layers
 - □ The SRs and capacitors are mounted directly on the secondary windings
 - □ In this way, the SR's termination loss is greatly reduced

Quarter-Turn Transformer Design

✓ Confirm the secondary current distribution using Q3D
 □ Except for the corners, they are evenly distributed.

Pational Taiwan University of Science and Technology

Quarter-Turn Transformer Design

- The secondary side is a quarter turn
 - > Effectively reduces copper loss
- Core height: 6mm
- Circuit volume: 26.4cm³

Pational Taiwan University of Science and Technology

Quarter-Turn Transformer Design

- ✓ Peak efficiency at half load is 97.01%
 - Primary side switch: GS66516T
 - Secondary side switch: BSC010N04LS
 - Core material: 3F46

Loss analysis results at full load

Transformer Structure Comparison

42

Pational Taiwan University of Science and Technology

Transformer Structure Comparison

Structure Item	Stacked PCB Winding	Integrated Matrix Transformer	Quarter-Turn Transformer
РСВ			
Advantage	 Symmetric rectifier current path Shorter rectifier current path 	 High power density Core loss reduction 	Lowest number of secondary- side turns is a fractional turn, and secondary-side loss can be effectively reduced
Disadvantage	 Complex design Limited by iron core high Higher termination loss 	 The minimum number of secondary-side turns is 1 Secondary-side copper loss cannot be effectively reduced 	The secondary-side layout must be symmetrical, otherwise it causes current and magnetic flux imbalance

High Power Density DC-DC Converter

TANNAN TECH

National Taiwan University of Science and Technology

IEEE IFEC 2017, Blacksburg

System Architecture

- Operation frequency: 120~190 kHz
- L6599A is used as control IC

TAIWAN TECH

- IR11688s is self-adaptive SR control IC
- L6599A is supplied by auxiliary power

Power Density

- 1st version
 - Power Density: 7.44 W/cm³ or 121.93 W/in³
- 2nd version
 - > Power Density:

9.94 W/cm³ or 162.88 W/in³

Pational Taiwan University of Science and Technology

P National Taiwan University of Science and Technology

- Operation frequency: ~ 500 kHz
- DSP chip TMS320F28035 is used as the controller
- DSP is supplied by auxiliary power
- Tested under closed-loop control
- All GaN devices are used

Version	Power Density	Core of Transformer
1st	5.32 W/cm ³ or 87.18 W/in ³	31.75 * 20.3 * 9.5 mm ³ (Material: P61)
2nd	7.93 W/cm ³ or 129.97 W/in ³	24 * 20.3 * 9.5 mm ³ (Material: P61)

11.1 cm

1st version (Height: 1cm)

TAIWAN TECH

12.7 cm

9.6 cm

2nd version(Height: 1cm)

Efficiency Curve

49

Pational Taiwan University of Science and Technology

P National Taiwan University of Science and Technology

GaN based server power supply

TAIWAN TECH

high power density/ small form factor/ digital control 51

GaN based server power module

Circuit P	Parameters
Input/ Output voltages	380V/12V
Output Power	800W
Switching Freq.	1MHz
Primary Switches	GS66508T
Secondary Switches	BSC0500NSi
Core Material	ML91S
Turns Ratio	16:1
Dimension	6.5cm x 3.2cm x 0.7cm

TAIWAN TECH

Prototype

GaN based 48V DC-DC module

Circuit Paramete	ers
Input Voltage	48 V
Output Voltage	6 V
Output Current	190 A
Output Power	1100W
Efficiency	98 %
Power Density	70 W/cm ³
Transformer Turns Ratio	2:0.25
Core Material	P63
Primary Switches	EPC2053
Secondary Switches	EPC2023
Primary Driver IC	LM5113
Secondary Driver IC	UCC27611
Resonant Capacitance	1.05 μF
Resonant Inductance	23 nH
Magnetizing Inductance	2.4 μH

TAIWAN TECH

National Taiwan University of Science and Technology

GaN based 48V DC-DC module

GaN based 48V DC-DC module

– Peak Efficiency 98.2%

TAIWAN TECH

Power Density 70 W/cm³

Power Losses@1100W

Pational Taiwan University of Science and Technology

GaN based 48V DC-DC module

1. M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48V VRM With Intermediate Bus Voltage Optimization For Data Centers," in IEEE Journal of Emerging and Selected Topics in Power Electronics.

2. Z. Ye, R. A. Abramson and R. C.N. Pilawa-Podgurski, " A 48-to-6 V Multi-Resonant-Doubler Switched-Capacitor Converter for Data Center Applications," 2020 Applied Power Electronics Conference and Exposition (APEC)

GaN based totem-pole bridgeless CCM PFC

G566516B (e4)

TAIWAN TECH

C			0	
	/*[/*[
	, " Ľ	, , ,		
	low fre	equei	T ncy leg	

High frequency leg

Item	Value
V _{in}	90~264Vac
Efficiency	99% @ 230Vac
Power Factor	0.99
V _{out(max)}	400V
Output power	1kW @ 90-132V 2.6kW @ 180-264V
Control IC	TMS320F28035
High Freq. Switches	GS66516B

Pational Taiwan University of Science and Technology

GaN based totem-pole bridgeless CCM PFC

GaN based totem-pole bridgeless CCM PFC

GaN based totem-pole bridgeless CCM PFC

60

Pational Taiwan University of Science and Technology

GaN based totem-pole bridgeless CCM PFC

National Taiwan University of Science and Technology

High power density GaN based adaptor

Item		Valu	e
V _{in}		110 V	ac
Vo		19 Vo	lc
Po		45 V	V
Turns ratio		12:2	2
Fs		518kl	Ηz
Core		ERI2	5
Efficiency		93%	,)
V _{out} (V)	I _{out} (A)	P _{out} (%)	Efficiency (%)
19.065	0.5945	25	91.40
19.064	1.1799	50	92.57
19.063	1.7644	75	93.77
19.063	2.3647	100	94.18

TAIWAN TECH

Miniaturization

62

Pational Taiwan University of Science and Technology

High Power Density Bidirectional Converters

TANNAN TECH

National Taiwan University of Science and Technology

System Architecture

- First stage: Open-Loop CLLC resonant converter
- Second stage: Multiphase SR Buck/Boost converter
- TMS320F28069 is used as controller
- Bluetooth is used for communication

CLLC Resonant Converter

Advantages:

- Primary side achieves ZVS over full load range
- Secondary side achieves ZCS in LLC region

Transformer Design

National Taiwan University of Science and Technology

Transformer Design

✓ Transformer with controllable leakage integration

- Without primary and secondary resonant inductors
- Increasing the power density

Transformer Design

✓ Transformer with controllable leakage integration

- The ratio between center leg and outer leg
- Check the coupling coefficient by MAXWELL
- Turns ratio is 9:3

Width of	Coupling	I (II)	T (TT)
Center Leg	Coefficient	$L_{lkp}(\mu \mathbf{\Pi})$	L _{lks} (μΠ)
0.1mm	0.9291	7.08	0.871
0.2mm	0.9197	7.58	0.934
0.3mm	0.9116	8.06	0.994
0.4mm	0.9044	8.49	1.04
0.5mm	0.8981	8.89	1.98
0.6mm	0.8922	9.29	1.14
0.7mm	0.8869	9.64	1.19
0.8mm	0.8820	10.02	1.24
0.9mm	0.8774	10.40	1.29
1.0mm	0.8731	10.79	1.34

Transformer Design

✓ Transformer with controllable leakage integration

- PCB winding for the transformer
- Interleaved structure for lower MMF
- Check the value of Magnetomotive Force

P National Taiwan University of Science and Technology

DC Buffer Multiphase SR Buck/Boost Converter

Advantages:

- Using the output inductor can reduce the current ripple
- The Triangular Current Mode is used to achieve ZVS

Disadvantages:

TAIWAN TECH

• The control method is complicated

Pational Taiwan University of Science and Technology

DC Buffer Multiphase SR Buck/Boost converter

✓ ZVS condition

- **I**_R is the key point for ZVS
- When I_R is large, it causes the higher conduction loss
- When I_R is lower, it loses the property of ZVS

Whole System& 3D Model

Midterm version Power density: 1.6 W/cm³

- Six-layers PCB layout
- Volume: 24.93*8.1*3.27 (cm³)

 \approx

• Twelve-layers PCB layout

Final version

• Volume: 16.93*8.1*3.27 (cm³)

TAIWAN TECH

Power density: 2.3 W/cm³

Efficiency Curves: Whole System

Forward Mode

• The efficiency is $93.41(V_0=48V)$, $94.43\%(V_0=45V)$ and $92.78\%(V_0=40V)$

Reverse Mode

TAIWAN TECH

• The efficiency is 92.39%, 94.07% and 93.59% with V_{dc} =50V

Experimental Results

- CLLC test waveform (Forward Mode)
- V_{in}=400V V_o=66V

Experimental Results

- CLLC test waveform (Reverse Mode)
- $V_{in} = 66V V_o = 400V$

Pational Taiwan University of Science and Technology

Experimental Results

- SR buck test waveform (Forward Mode)
- $V_{bus} = 66V V_o = 40V$

1000W

77

Pational Taiwan University of Science and Technology

Experimental Results

- SR buck test waveform (Forward Mode)
- V_{bus} =66V V_o =48V

1000W

78

Pational Taiwan University of Science and Technology

Experimental Results

- SR buck test waveform (Reverse Mode)
- V_{in} =48V V_{bus} =66V

P National Taiwan University of Science and Technology

SiC-based High Power Density Bidirectional DC-DC Converter

TAMAN TECH

National Taiwan University of Science and Technology

DAB Bidirectional DC-DC Converter

81

P National Taiwan University of Science and Technology

18kW/ 300kHz SiC-based HPD DAB Converter

SiC based bidirectional power

- **Switching frequency** > 300kHz
- **High power density**
- **D** Robust and simple control
- □ **Bi-directional power conversion**

High Power Density PV Inverter

TAMAN TECH

National Taiwan University of Science and Technology

Google LBC Academic Award, 2015

Google Little Box Academic Award

Primary Academic Institution	Principal Investigator
University of Colorado Boulder	Khurram K. Afridi
National Taiwan University of Science and Technology	Huang-Jen Chiu
Universidad Politécnica de Madrid	José A. Cobos
Texas A&M University	Prasad Enjeti
ETH Zürich	Johann W. Kolar
University of Bristol	Neville McNeill
Case Western Reserve University	Timothy Peshek
University of Illinois Urbana-Champaign	Robert Pilawa-Podgurski
University of Stuttgart	Jörg Roth-Stielow
Queensland University of Technology	Geoff Walker

Photovoltaic Inverters

LBC Specifications

Parameter	Requirement	Comment
Maximum load	2 kVA	Load will be adjusted so that at most 2 kVA is sourced at 240 V RMS AC output at 60 Hz
Power density	> 50 W/in ³	In accordance with maximum load and volume requirements
Volume	< 40 in ³	Require rectangular enclosure, max dimension 20 in., min 0.5 in.
Voltage input	450 V DC, 10 Ω Resistor	See voltage source description
Voltage output	240 +/- 12 V AC	Single phase. See description below
Frequency output	60 +/- 0.3 Hz	Single phase
Power factor of load	0.7-1	Leading and lagging, load description below
Voltage output THD+N	< 5%	Total harmonic distortion+noise

Inverter Topology

Parallel Ripple Decoupler Topology

90

Pational Taiwan University of Science and Technology

Overall Power Stage

Reverse Current Control

 \times Without reverse current control it may cause high RMS current

✓ Maintain reverse current to a fixed value

Inverter Inductor Current

Set reverse-current as 5 A

National Taiwan University of Science and Technology

Circuit Specifications

Parameter	Value
Maximum load	2 kW
Input voltage	450 V DC, 10 Ω resistor
Output voltage	240 V AC
Output frequency	60 Hz
Power factor of load	1 (Resistive load)
Ripple decoupler switching frequency	700 kHz
Inverter switching frequency	200~500 kHz

Thansphorm TPH3205WS GaN HEMT are used as power switches

Reverse-Current Control

Output Voltage Waveform

@ 2000 W

Pational Taiwan University of Science and Technology

DC/AC efficiency (CEC): 96.5 %

P National Taiwan University of Science and Technology

Power Density

Top View

Volume : 22.055 in³ Dimensions : 5.985 inch x 3.685 inch x 1.000 inch Power density: 90.682 W/ in³

Side View

Google Little Box Academic Award

Google granted US\$30,000 award for research of high power density PV inverters

Thank you for your attention!

TAIWAN TECH

P National Taiwan University of Science and Technology