

Outline

What types of problems are there to solve

- Narrow Quantum Advantage versus problems requiring full fault tolerance
- What performance specifications does this require?

Superconducting Transmon Qubits

- Non-linear superconducting circuits \rightarrow Qubit
- Measurement
- Device architecture

Hardware Challenges

- 10's of qubits to 100's of qubits to 1000's of qubits
- Hardware Advances
- Promises and limits of dilution refrigeration
- Roadmap Forward

rigetti

Requires

- 100 Millions of physical qubits • PRA 86, 032324 (2012)
- Fault tolerant processors

- Hybrid Classical-Quantum Methods

 VQA, Variational Quantum Algorithm
- Simulation o Strongly interacting quantum systems
- Optimization
 - Industrial
 - Financial
 - Machine Learning

rigetti

Nature 574, 505 (2019)

IBM

- Nature 618, 500 (2023)
 - 127Q device 0
 - 0 fixed frequency transmon
 - Sim 1Q: 0.0675%, Sim 2Q: 1.15%, RO: 1.53% 0

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

rigetti

Fundamental limits on Gate Performance

Gate times set error limits

- gate fidelity limited at long times by finite coherence times as well as having complete circuit fit in coherence window
- short time limit expanded bandwidth of short control pulses

rigetti

Fundamental limits on Gate Performance

Gate times set error limits

- gate fidelity limited at long times by finite coherence times - as well as having complete circuit fit in coherence window
- short time limit expanded bandwidth of short control pulses

These performance metrics are fundamentally limited by the coherence time of the qubits

- Energy Relaxation T₁
- Dephasing T₂

Google - mean T1: 20 us, T2-cmpg: 30 us IBM - T1: 293 us, T2: 157 us Zuchongzhi - T1: 30.6 us, T2: 5.3 us Rigetti Aspen M-3 - T1: 25 us, T2: 28 us

rigetti

Copyright Rigetti Computing 2023

10

What's special about superconducting materials?

Electrons in Superconducting Materials behave more like a collective quantum coherent light source, such as a laser, than individual electrons

Degrees of freedom in superconducting circuits, the electrical charge and magnetic flux, can be described as the conjugate variables of a single quantum object

$$[\hat{x},\hat{p}]$$
 $ightarrow$ $[\hat{q},\hat{\phi}]=i\hbar$

Resistive-less dynamics

- Doesn't dissipate heat on chip
- Necessary for coherence properties of device

What's special about superconducting materials?

Electrons in Superconducting Materials behave more like a collective quantum coherent light source, such as a laser, than individual electrons

Degrees of freedom in superconducting circuits, the electrical charge and magnetic flux, can be described as the conjugate variables of a single quantum object

Copyright Rigetti Computing 2023

$$[\hat{x}, \hat{p}] \rightarrow [\hat{q}, \hat{\phi}] = i\hbar$$

Resistive-less dynamics

- Doesn't dissipate heat on chip
- Necessary for coherence properties of device

Defines operational frequency range

$$T_c = 1.2 \,\mathrm{K} \rightarrow 2\Delta/\hbar \sim 100 \,\mathrm{GHz}$$

 $T_{env} = 10 \,\mathrm{mK} \rightarrow 1 \,\mathrm{GHz}$

rigetti

Quantum Mechanics of Superconducting Circuits

Quantum Mechanics of Superconducting Circuits

Superconducting Flex Cabling
 Want high electrical conductivity - low thermal conductivity between temperature stages Until now provided by comprise metals, i.e. SS, CuNi At larger qubit count, finite resistance of normal metal overwhelms the cooling power of the lower stages At larger qubit count, physical footprint of SMA (or other variants) overwhelm the finite size of cryostat temperature stages
notti

Superconducting Flex Cabling

- Want high electrical conductivity low thermal conductivity between temperature stages
 Until now provided by comprise metals, i.e. SS, CuNi
- At larger qubit count, finite resistance of normal metal overwhelms the cooling power of the lower stages
- At larger qubit count, physical footprint of SMA (or other variants) overwhelm the finite size of cryostat temperature stages

Points to High Density Superconducting Cabling solution

- NbTi Tc ~ 9K as promising candidate
- NbTi rf cabling prohibitively expensive
- NbTi difficult to solder, brittle cabling

rigetti

Interconnects

Quantum Information I/O between cryostats

For the need to transmit quantum information over longer distances, coherent transduction to higher frequency band is necessary

Magnard, PRL 125, 260502 (2020)

rigetti

Copyright Rigetti Computing 2023

Interconnects

Quantum Information I/O between cryostats

For the need to transmit quantum information over longer distances, coherent transduction to higher frequency band is necessary

Magnard, PRL 125, 260502 (2020)

Amplifier Improvements	
 Readout has tiny signals, ~ 0(10) photons. Need amplification! quantum limited - thermalized such that hf > k_bT thermalized to MXC - best to be as close as possible to high bandwidth traveling wave parametric amplifiers rather than reson more qubit readout resonators per feedline high saturation power more qubit readout resonators per feedline 	to device to avoid insertion loss ant cavity based Saturation power: -100 dBm Bandwidth: 2 GHz Gain: 20 dB
 Want to reduce the total number of amplifiers Require large pump powers that add significant heat load to MXC Also readout chain currently uses large microwave components: circulators, isolators, directional couplers that use limited volume currently limited to 6-8 qubits per readout line 	And the second
rigetti Copyright Rigetti Computing 2023	
Amplifier Improvements	

Improve on narrow and non-uniform amplification band with JJ-based devices

- Reserve-Kerr TWPA show broader, more uniform, amplification bands
- Utilizes third-order nonlinearity from asymmetric JJ-loop

Ranadive, Nat. Comm. 13, 1737 (2022)

rigetti

Conclusion Shift in the industry to emphasize performance before scaling other types of SC qubits 0 other candidate SC materials and substrates 0 Once >99% 2-gubit gates and single-shot readout is demonstrated, there does seem to be a 'clear-ish' path to 100's of 1000s of qubits improving dilution refrigeration technology o quantum interconnects 0 quantum-classic interface readout chain improvements And conceivable possible in ~ 5 years But other hardware platforms are promising! Remains to be seen whether, or for how long, superconducting qubits remain the most prominent hardware platform rigetti Copyright Rigetti Computing 2023

