

Outline

Introduction

- Nonlinear Quantum Photonics
- AlGaAsOI
- Applications:
 - Path Encoding
 - Multi-photon Cluster State Generation
 - Frequency Bin Quantum Information Processing

Mature Silicon Photonics Ecosystem

How do we go from a few qubits to a useful quantum computer?

The Future of Integrated Quantum Photonics is Heterogeneous

2022	Roadmap	on	integrated	quantum	photonics

annan Annan (Beryl Sancis-Agaidar, Alex I, Norer, Krishna C, Rabari, Saurhan C, F Mathawi, William Labr, Cheryl Sancis-Agaidar, Alex I, Norer, Krishna C, Rabari, Saurhan C, F Mathawi, S., Anthone Laing,

"Heterogeneous Integrated Photonics for Quantum Information Science and Engineering"

Juodawlkis, Loh, Sorace-Agaskar, MIT Lincoln Lab

Current and Future Challenges

- Breadth of requirements
- Variety of materials needed
- Electronic-photonic integration
- Scaling prototypes to products

Advances in Science & Tech Needed

- Community-defined set of broadwavelength platforms
- Heterogeneous integration techniques fabricated using silicon-foundry-compatible processes and open PDKs
- 3D integration to decouple photonic/electronic processes

attend.ieee.org/qc-dcep

Outline

□ Introduction:

Nonlinear Quantum Photonics

□ AlGaAsOI

• Applications:

- Path Encoding
- □ Frequency Bin Quantum Information Processing
- Quantum Key Distribution

Comparison of Photonic Materials

Material	χ ⁽²⁾ [pm/V]	χ ⁽³⁾ [cm²/W]	Refractive Index @ 1550 nm	Bandgap [nm]	Scalability [mm]	Functionality
SOI	-	6.5 × 10 ⁻¹⁴	~3.4	1100	300	passives, manufacturability
Sinoi	-	2.5 × 10 ⁻¹⁵	~2	238	300	passives, conversion, sources, visible
LNOI	26	5.3 × 10 ⁻¹⁵	~2.14	310	150	sources, modulators, conversion, visible
AlGaAsOl	180	2.6 × 10 ⁻¹³	~3.4	625	200	sources, modulators, conversion, gain
GaNOI	9	1.2 × 10 ⁻¹⁴	~2.3	365	-	sources, modulators, conversion, gain
InGaPOI	263	1.1 × 10 ⁻¹³	~3.2	650	200	sources, modulators, conversion, gain
Ta ₂ O ₅	-	6.2× 10 ⁻¹⁵	~2	320	100	passives, conversion, sources, visible
AIN-OI	1	2.3 × 10 ⁻¹⁵	~2	205	300	passives, sources, visible
SiC-OI	12	1 × 10 ⁻¹⁴	~2.7	383	100	sources, modulators, visible

See: Moody, Chang, Steiner, Bowers, AVS Quantum Science 2, 041702 (2020)

Moody et al., Roadmap on Integrated Quantum Photonics, J. Phys. Photonics 4, 012501 (2022)

15

Com	parison	of Pho	tonic	Mat	erials
		0			onalo

Material	χ ⁽²⁾ [pm/V]	χ ⁽³⁾ [cm²/W]	Refractive Index @ 1550 nm	Bandgap [nm]	Scalability [mm]	Functionality
SOI	-	6.5 × 10 ⁻¹⁴	~3.4	1100	300	passives, manufacturability
SiNOI	-	2.5 × 10 ⁻¹⁵	~2	238	300	passives, conversion, sources, visible
LNOI	26	5.3 × 10 ⁻¹⁵	~2.14	310	150	sources, modulators, conversion, visible
AlGaAsOI	180	2.6 × 10 ⁻¹³	~3.4	625	200	sources, modulators, conversion, gain
GaNOI	9	1.2 × 10 ⁻¹⁴	~2.3	365	-	sources, modulators, conversion, gain
InGaPOI	263	1.1 × 10 ⁻¹³	~3.2	650	200	sources, modulators, conversion, gain
Ta ₂ O ₅	-	6.2× 10 ⁻¹⁵	~2	320	100	passives, conversion, sources, visible
AIN-OI	1	2.3 × 10 ⁻¹⁵	~2	205	300	passives, sources, visible
SiC-OI	12	1 × 10 ⁻¹⁴	~2.7	383	100	sources, modulators, visible

See: Moody, Chang, Steiner, Bowers, AVS Quantum Science 2, 041702 (2020) Moody *et al.*, Roadmap on Integrated Quantum Photonics, J. Phys. Photonics 4, 012501 (2022)

Compound Semiconductor-on-Insulator (CSOI)

Nonlinear Photonics with III-V Materials

Outline

Introduction

Nonlinear Quantum Photonics

AlGaAsOI

Applications:

- □ Path Encoding
- Frequency Bin Quantum Information Processing
- Quantum Key Distribution

AlGaAsOI for Quantum Light Generation

20

19

10/23/2023

Xie, W. et al. Opt. Express 28, 32894 (2020)

AIGaAsOI for Entangled-Pair Generation AlGaAs/SiO₂ wafer bonding + hard mask + passivation Normalized Trans. (dB) SFWM - 8 -12 1530 1550 1570 SiO, Wavelength (nm) **Entangled** Pair **Generation Rate** $\propto \gamma^2 Q^3 R^{-2}$ 500nm SiO₂ nonlinearity/ maintain high Q low loss @ small R confinement

AIGaAsOI for Entangled-Pair Generation High Two-Photon Visibility High Raw Photon Pair Flux SNSPD BPF [5] (ZHW) 2.0 200)[1] Detected Singles Counts 0.01 (0)1000 10 3 (55), (LL) 5000 ŝ ted Dete 2000 0.2 200 60 100 100 On-chip Power (μW) 200 On-chip Newer (µ/W) ISL) High Single Photon Purity 11.53 0.35 BPF 0.30 0.25 1.00 0.20 õ -0.75 0.15 Visibility 0.10 0.50 SNSPD 0.05 0.25 0.00 400 600 800 1000 1200 200 0.00 Average Raw Photon Counts (kHz) Ó 50 100 150 200 250 300 On-Chip Power (µW)

Ultra-Efficient Entangled-Photon Pair Generation

Status of Nonlinear Quantum Light Generation (2022)

Material	Q	On-Chip Efficiency	Brightness (pairs s ⁻¹ GHz ⁻ ¹) @ 100 µW	Detected Singles (cps)	Detected CCs (cps)	Visibility (PGR)	Purity (PGR)	CAR (PGR)	On-Chip Squeezing	Squeezing Pump Power
SOI	~10 ⁵	0.149 GHz/mW ²	1.49 x 10 ⁶	0.3 x 10 ⁶	5 x 10 ³	98.9% (1 MHz)	99.5% (1 MHz)	532 (1 MHz)	0.2 dB (microring)	3 mW
Si ₃ N ₄	2 x 10 ⁶	0.004 GHz/mW ²	4.3 x 10 ⁶	0.1 x 10 ⁶	1.8 x 10 ⁴	90% (1 MHz)	NA	~10 (1 MHz)	8 dB (molecule)	70 mW
LiNbO ₃	-	0.778 GHz/mW (with 17 nm BW filters)	30 x 10 ³	NA	NA	98.8% (380 kHz)	NA	~30 x 10 ³ (1 MHz)	6.3 (PPLN WG)	304 mW
LiNbO ₃	10 ⁵	5.13 GHz/mW	8 x 10 ⁵	NA	35	96.5%	99.1%	50 (50 MHz)	NA	NA
GaAs/ AlGaAs	1.2 x 10 ⁶	20 GHz/mW ²	1.3 x 10 ⁹	5 x 10 ⁶	30 x 10 ³	97.1% (1 MHz)	99.6% (1 MHz)	~3 x 10 ³ (1 MHz)	6.7 dB (microring)	5 mW
InGaP	1.75 x 10 ⁵	27.5 GHz/mW	2.5 x 10 ⁹	NA	NA	NA	NA	400 (1 MHz)	NA	NA
InP	4 x 10 ⁴	0.145 GHz/mW ²	1.45 x 10 ⁶	NA	112	78.4% (1 MHz)	NA	277 (1 MHz)	NA	NA
AIN	1.1 x 10 ⁵	0.006 GHz/mW	0.53 x 10 ⁶	NA	80	NA	91.2% (1 MHz)	NA	NA	NA
GeSbS	1 x 10 ⁶	0.07 GHz/mW ²	4.3 x 10 ⁶	0.8 x 10 ⁶				2 (70 MHz)	NA	NA

Towards Heterogeneous and Hybrid Laser Integration

Expanding the III-V Quantum Photonics Toolbox

APL 111, 141101 (2017)

Gubit Deffulti plexes

TABLE I. Table comparing the AlGaAsOI platform with SOI and Si₃N₄ designed for integrated quantum photonics.

	AlGaAsOI (this work)	SOI	Si ₃ N ₄
Inverse Taper Coupling Loss	2.9 dB	$< 3 dB^{35}$	$2 - 3 dB^{60}$
Waveguide Crossing Loss	0.23 dB	$0.2 \ \mathrm{dB}^{45}$	$0.3 dB^{46}$
MZI Extinction Ratio	> 30 dB	$> 30 \mathrm{dB^{61}}$	$>40~{\rm dB^{62}}$
MZI Bandwidth (> 10 dB ER)	200 nm Cross 90 nm Through	$>40~\mathrm{nm^{57}}$	180 nm ⁶²
MZI Heater Efficiency	20 mW/π (10.2 nm FSR)	12 mW/π ⁵⁶ (5.8 nm FSR)	200 mW/π ⁵⁵ (NA)

Outline

- □ Introduction
- Nonlinear Quantum Photonics

AlGaAsOI

□ Applications:

- Path Encoding
- Multi-photon Cluster State Generation
- Frequency Bin Quantum Information Processing

□ 1 MHz detected rates with <100 μ W on-chip power □ Up to 100 mHz four-fold rates (5X > SQI) □ Indistinguishability > 90%

Multi-Photon Cluster State Generation

expand entanglement to four photons across four spatial modes (waveguides) using squeezed light

Frequency Bin Entanglement

Use a phase modulator to project a single frequency into multiple side bins

Frequency Bin Entanglement

Use a phase modulator to project a single frequency into multiple side bins

Frequency Bin Encoding

- Should reduce loss of bulk component implementations (~15 dB/channel) to the few dB level
- □ Modulator simulations: 40 GHz bandwidth with $V\pi L < 10 V$ cm (fab ongoing now)
- Applicable to quantum frequency encoding and entanglement characterization

Thank You!

collaborators

John Bowers (UCSB) Tin Komljenovic (Nexus) Hubert Krenner (Munster) Garrett Cole (Thorlabs) Joe Lukens (ORNL) Navin Lingaraju (JH APL) Rich Mirin (NIST) Marco Liscidini (Pavia) Andrew Weiner (Purdue) Yifei Li (UMass Dartmouth) Daehwan Jung (KIST)

