## Cryo-CMOS Transceivers for Control and Readout of Semiconductor Spin Qubits

**Masoud Babaie** 

**Delft University of Technology** 



## Outline

- Need for cryogenic electronics for scalable quantum computers
  - Associated challenges
- Introducing control and readout principles for spin qubits
- Cryo-CMOS controller for spin qubits
  - Behavior of active and passive CMOS devices at cryogenic temperatures
  - Required circuit and system specification
  - Controller architecture and circuit implementation
  - Electrical characterization
  - Experiments with qubits (single- and two-qubit operations)
- Gate-based readout for spin qubits
  - Receiver architecture and implementation
  - Electrical characterization
  - Experiments with qubits
- Conclusions

#### General Block Diagram of a Quantum Computer

#### Electronic interface (Control & Readout)





[J. Bardin, ISSCC'23]

#### What Can We Learn from History?

- Miniaturization Vacuum tube to transistors
- Integration Transistor to Integrated Circuit



**ENIAC** (Vacuum tube) **Integrated Circuit** 

Silicon-based computers

#### Need for cryogenic electronics



#### Challenges

- What kinds of functionalities are needed for qubit control and readout?
- System & circuit specifications?
  - Linearity, noise, jitter,...
- Cryogenic technology?
  - How does commercial CMOS perform at 4K? Transistor model?
- Demanding spec with limited power consumption?
- Cryogenic measurements?
- Measurements with Qubits?



## Outline

- Need for cryogenic electronics for scalable quantum computers
  - Associated challenges
- Introducing control and readout principles for spin qubits
- Cryo-CMOS controller for spin qubits
  - Behavior of active and passive CMOS devices at cryogenic temperatures
  - Required circuit and system specification
  - Controller architecture and circuit implementation
  - Electrical characterization
  - Experiments with qubits (single- and two-qubit operations)
- Gate-based readout for spin qubits
  - Receiver architecture and implementation
  - Electrical characterization
  - Experiments with qubits
- Conclusions

#### Required Functionalities for running a Quantum Algorithm



# **Spin Qubit Operation– Initialization**





- Behavior of double quantum dot → dependent on the voltage of the plunger gates (V<sub>LP</sub>, V<sub>RP</sub>)
- (N<sub>L</sub>, N<sub>R</sub>) → Electron population on the left and right dots

### **Single-Qubit Operation**



#### **Frequency Multiplexing Technique for Qubit Control**



## **Two-Qubit Gate**



- No interaction between qubits
- Suitable for single-qubit operation

- Enabling qubit-1 and qubit-2 interaction by applying a voltage pulse on barrier gate
- Controlled-Not (CNOT)  $\rightarrow$  XOR

 $\begin{cases} Q_1 = |0\rangle \rightarrow Q_2 \text{ unchanged} \\ Q_1 = |1\rangle \rightarrow Q_2 \text{ flipped} \end{cases}$ 

## **Spin Qubit Operation– Manipulation**











#### **Gate-based Readout**



#### **Required Building Blocks**



## Outline

- Need for cryogenic electronics for scalable quantum computers
  - Associated challenges
- Introducing control and readout principles for spin qubits
- Cryo-CMOS controller for spin qubits
  - Behavior of active and passive CMOS devices at cryogenic temperatures
  - Required circuit and system specification
  - Controller architecture and circuit implementation
  - Electrical characterization
  - Experiments with qubits (single- and two-qubit operations)
- Gate-based readout for spin qubits
  - Receiver architecture and implementation
  - Electrical characterization
  - Experiments with qubits
- Conclusions

## Modeling: Cryo-CMOS Benefits and Constraints

|    | Parameter                                        | Behavior                                     |
|----|--------------------------------------------------|----------------------------------------------|
| 1  | Threshold voltage                                | Increases by ~100mV                          |
| 2  | Mobility                                         | Increases                                    |
| 3  | Saturated velocity                               | Increases by 40%                             |
| 4  | Transconductance                                 | increases                                    |
| 5  | $G_m/I_D$ in saturation                          | No change                                    |
| 6  | G <sub>m</sub> /I <sub>D</sub> in weak-inversion | Up to 3x improvement                         |
| 7  | Subthreshold swing                               | Decreases but<br>not proportionally to temp. |
| 8  | Leakage current                                  | Reduces substantially                        |
| 9  | device output resistance                         | decreases by 50%                             |
| 10 | device intrinsic gain                            | Almost the same                              |
| 11 | Switch ON-resistance                             | ~50% reduction                               |

|    | Parameter                           | Behavior                                  |
|----|-------------------------------------|-------------------------------------------|
| 12 | Gate resistance                     | ~50% reduction                            |
| 13 | Device parasitic cap.               | Almost the same                           |
| 14 | f <sub>t</sub> and f <sub>max</sub> | 40% increase                              |
| 15 | Device matching                     | worse                                     |
| 16 | $A_{vth}, A_{\beta}$                | 25% increase                              |
| 17 | Thermal conductivity                | No change (maximizes at 20K)              |
| 18 | Self heating                        | Much more serious                         |
| 19 | Thermal noise                       | Reduces but<br>not proportionally to temp |
| 20 | Flicker noise                       | Almost the same                           |
| 21 | Ind. & cap. value                   | Almost the same                           |
| 22 | Cap. Q-factor                       | 3x improvement <10GHz                     |
| 23 | Ind. Q-factor                       | 2.5x improvement                          |

# **Emulating Qubit Behavior**



#### **System-Level Specifications**



### **Controller Architecture**



#### **Controller Architecture**



# Numerically-Controlled Oscillator (NCO)



$$n_{NCO} > \log_2 \frac{f_S}{2f_R \sqrt{1-F}} \xrightarrow{F=99.99\%, f_R=1MHz} \boxed{n_{NCO} \ge 17 - \text{bit}}$$

## **Phase-to-Amplitude Conversion**



#### Need for Amplitude & Phase Modulation



# **Deriving Frequency Multiplexed Qubits**



- Intermittent sequential operations on any qubit demand keeping track of the phase of all qubits.
- Consequently, an individual reference clock would be required for each qubit.
- NCO outputs are time-multiplexed to allow operation on one qubit at a time to reduce system.

## **Simultaneous Qubit Operation**



• Corresponding signal of two qubits can be generated simultaneously.

### LO Feedthrough and Image Problems



$$IIR \approx \frac{4}{\epsilon^2 + \Delta\theta^2} \xrightarrow{IIR \gg 50 dB} \begin{cases} \Delta\theta \ll 0.3^\circ \\ \epsilon \ll 0.5\% \end{cases}$$

## LO Feedthrough and Image Cancellation



- $\alpha_{I}$  and  $\alpha_{Q}$  for compensating for gain imbalance.
- $\beta_I$  and  $\beta_Q$  for compensating for phase imbalance.
- $\gamma_{\rm I}$  and  $\gamma_{\rm Q}$  for cancelling LO leakage.

## **System Architecture**



Controller

**Transmitter** 















## **Chip Micrograph & Self heating**



Power consumption (W)

#### **Experimental results – Pulse Shaping**



Initialization













## Simultaneous Rabi Oscillation on Two Qubits



## Generate two-tone signal with Horse Ridge





## **Towards Two-Qubit Gate Operation**



# **A Cryo-CMOS-Driven Quantum Algorithm**



## Outline

- Need for cryogenic electronics for scalable quantum computers
  - Associated challenges
- Introducing control and readout principles for spin qubits
- Cryo-CMOS controller for spin qubits
  - Behavior of active and passive CMOS devices at cryogenic temperatures
  - Required circuit and system specification
  - Controller architecture and circuit implementation
  - Electrical characterization
  - Experiments with qubits (single- and two-qubit operations)
- Gate-based readout for spin qubits
  - Receiver architecture and implementation
  - Electrical characterization
  - Experiments with qubits
- Conclusions

#### **Proposed RX Architecture**



#### • High-IF RX architecture

- Avoid higher 1/f noise at cryogenic temperatures, thus maintaining the qubits SNR over the entire bandwidth
- Slightly increasing the power consumption of IF amplifiers and ADCs

### **RX Schematic**





[B. Prabowo, ISSCC'21]

#### **Chip Micrograph & Power Consumption**





• Total power of 66mW at 4K

#### **RX Characterizations at 300K & 4K**



- ~5 dB gain increase at 4K
  - Increase in mobility
  - Increase in Q factor

- ~5x NF reduction
  - Shot noise
  - Self-heating effect

- 16-QAM -70 dBm input
- 200 MHz Baseband LPF

### **Measurement Setup**



• A traveling-wave parametric amplifier (TWPAR) and a HEMT LNA are used in the readout chain not to limit the inherent qubit SNR.

#### **Readout Setup**

Installed copper enclosure







Image: state stat

#### **4K Plate**

#### Mixing Chamber

#### **Measured Charge Stability Diagram**



## Outline

- Need for cryogenic electronics for scalable quantum computers
  - Associated challenges
- Introducing control and readout principles for spin qubits
- Cryo-CMOS controller for spin qubits
  - Behavior of active and passive CMOS devices at cryogenic temperatures
  - Required circuit and system specification
  - Controller architecture and circuit implementation
  - Electrical characterization
  - Experiments with qubits (single- and two-qubit operations)
- Gate-based readout for spin qubits
  - Receiver architecture and implementation
  - Electrical characterization
  - Experiments with qubits
- Conclusions



[The Economist, 20<sup>th</sup> Jun 2015]

### Cryo-CMOS: Betting on the winning horse





Spin qubits



NV-Center



## Acknowledgments

B. Prabowo





Prof. Vandersypen



B. Patra



J. Gong



Dr. Scappucci



J. van Diik



Dr. J. Clarke



P. 't Hart







Dr. S. Pellerano

J. Van Staveren



R. Overwater



Prof. E. Charbon



A. Ruffino

Dr. F. Sebastiano

G. Kiene

#### **Thank You for Your Attention!**