THERMAL MANAGEMENT CHALLENGES IN CRYOGENIC SYSTEM INTEGRATION: SPIN QUBIT BIASING WITH A CMOS DAC AT MK TEMPERATURE

WORKSHOP ON QUANTUM COMPUTING: DEVICES, CRYOGENIC ELECTRONICS AND PACKAGING

25.10.2023 | LEA SCHRECKENBERG, R. OTTEN, G. RIDGARD, P. VLIEX, S. VAN WAASEN

MOTIVATION

See: Pauka et al. A cryogenic CMOS chip for generating control signals for multiple qubits *Nature Electronics, Springer Science and Business Media LLC,* **2021**, *4*, 64-70

ELECTRONS IN QUANTUM DOTS

What is needed for a Spin Qubit Device?

P. Vliex et al., "Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications," in IEEE Solid-State Circuits Letters, vol. 3, pp. 218-221, 2020, doi: 10.1109/LSSC.2020.3011576.

Several uncorrelated bias voltages per Qubit Forming potential wells

RWTH Aachen Si/SiGe Qubit

Forschungszentrum

MOTHER – DAUGHTER BOARD SOLUTION

IC and Qubit Same Interposer

ZEA-2

Electronic Systems

Forschungszentrum

Forschungszentrum

R. Otten, L. Schreckenberg, et al. "Qubit Bias using a CMOS DAC at mK Temperatures" 2022 29th IEEE International Conference on Electronics, Circuits and Systems ICECS, IEEE, 2022

IC AND QUBIT: DIVIDED INTERPOSER

Mother – Daughter Board Solution

Forschungszentrum

Forschungszentrum

PCB WITH CUT OUT SOLUTION

11

SETUP AND WIRING

Cryostat – PCB – Qubit Device

CHARGE SENSING

Single and double Quantum Dot underneath P1 and P2 with DC bias of Cryo-DAC

Inter-dot transition and honeycomb pattern is clearly visible

L. Schreckenberg, R. Otten, et al., "SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature," ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC), Lisbon, Portugal, 2023, pp. 161-164, doi: 10.1109/ESSCIRC59616.2023.10268801.

Power

Rox MC

Cernox

Holder

Electron

Temp.

Interposer

Rox Sample

Consumption

14

Direct

0.9

SETUP COMPARISON

Interposer

Divided

Direct Copper^[6] IC Qubit Copper 400 20 Current I_{DS} (nA) 10 300 250 0 Sensor 200 -10 150 -20 100

JÜLICH

Forschungszentrum

HEAT DISTRIBUTION MEASUREMENT

EMP, European Microkelvin Platform

15

Appreciate funding of EMP Grant for project: Thermal Management of Cryogenic Electronics for Quantum Applications. See: https://emplatform.eu/

Member of the Helmholtz Association

25.10.2023

Member of the Helmholtz Association

MODELLING AND SIMULATIONS

Proof-of-concept of using a FEM engine to solve PDEs in cryogenics

25.10.2023

- COMSOL Model with Data from measurement and literature
- Thermal conductivity is temperature dependent
- Fit functions of thermal resistance from measurements obtained at cryogenic environment

THERMAL BOUNDARY RESISTANCE

Resistance between Interfaces due to surface effects

Bulk properties like defects or thickness do not affect TBR

TBR for dissimilar materials^[8,9]:

T << 1K:
$$R_B = \alpha T^{-3}$$

T \approx 1K: $R_B = \alpha T^{-2}$

CONCLUSION AND OUTLOOK

- Successful co-integration at 44 mK MC temperature
- Presented a DC qubit bias with charge sensing of electrons in the quantum dot
- Cryogenic modelling and heat distribution measurements to understand the material behavior at cryogenic temperatures
- Packaging and thermal management is an underestimated topic but very important for cryogenic ICs

THANK YOU!

ZEA-2, Forschungszentrum Jülich:

Patrick Vliex Nihal Deshpande Stefan van Waasen

Lancaster University & EMP: George Ridgard Mike Thompson Jon Prance

Institut NEEL, Univ. Grenoble Alpes Olivier Bourgeois Victor Doebele

Helmholtz Nano Facility (HNF), Forschungszentrum Jülich: Ran Xue Stefan Trellenkamp

JARA Institute for Quantum Information, RWTH Aachen University & Forschungszentrum Jülich: Rene Otten Isabelle Sprave Hendrik Bluhm

REFERENCES

[1] https://www.wired.co.uk/article/quantum-supremacy-google-microsoft-ibm

- [2] Pauka et al. "A cryogenic CMOS chip for generating control signals for multiple qubits," Nature Electronics, Springer Science and Business Media LLC, 2021, 4, 64-70
- [3] P. Vliex et al., "Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications," IEEE Solid-State Circuits Letters, vol. 3, pp. 218-221, 2020, doi: 10.1109/LSSC.2020.3011576.
- [4] R. Otten et al. "Qubit Bias using a CMOS DAC at mK Temperatures," 2022 29th IEEE International Conference on Electronics, Circuits and Systems ICECS, IEEE, 2022
- [5] I. Seidler, T. Struck, R. Xue et al., "Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture," npj Quantum Inf 8, 100, 2022.
- [6] L. Schreckenberg et al., "SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature," ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC), Lisbon, Portugal, 2023, pp. 161-164, doi: 10.1109/ESSCIRC59616.2023.10268801.
- [7] Nguyen, T., Tavakoli, A., Triqueneaux, S. et al. Niobium Nitride Thin Films for Very Low Temperature Resistive Thermometry. J Low Temp Phys 197, 348–356 (2019). https://doi.org/10.1007/s10909-019-02222-6
- [8] Gerald L. Pollack. "Kapitza Resistance". en. In: Reviews of Modern Physics 41.1 (Jan. 1969), pp. 48–81. issn: 0034-6861. doi: 10.1103/RevModPhys.41.48.
- [9] Thomas Beechem and Patrick E. Hopkins. "Predictions of thermal boundary conductance for systems of disordered solids and interfaces". In: Journal of Applied Physics 106.12 (Dec. 2009), p. 124301. issn: 0021-8979. doi: 10.1063/1.3267496.

