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A NEW COMPUTING MODEL — QUANTUM

REQUIRES QUBITS SCALE 
TO DOUBLE EVERY YEAR

POTENTIAL USE CASESNEW COMPUTING MODEL
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• Prime factorization of numbers - encryption
• Exponential speed-up

QUANTUM COMPUTATIONAL ADVANTAGE
Rigorous proofs of advantage, many “perfect” qubits required

SHOR’S ALGORITHM GROVER’S ALGORITHM

• Unstructured search
• Quadratic speed-up

However, the main QIS research efforts are focused on achieving quantum advantage for 
practical problems on near-term quantum devices without theoretical guarantees:

Scalable efficient classical simulators of quantum devices are vital here!
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GPU SUPERCOMPUTING IN THE QUANTUM COMPUTING ECOSYSTEM
Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

QUANTUM CIRCUIT SIMULATION
Critical tool for answering today’s most pressing questions 

in Quantum Information Science (QIS):

HYBRID CLASSICAL/QUANTUM APPLICATIONS
Impactful QC applications (e.g., simulating quantum materials and systems) 

will require classical supercomputers with quantum co-processors

+

• What quantum algorithms are most promising for near-term or long-term 
quantum advantage?

• What are the requirements (number of qubits and error rates) to realize 
quantum advantage?

• What quantum processor architectures are best suited to realize valuable 
quantum applications?

• How can we integrate and take advantage of classical HPC to accelerate 
hybrid classical/quantum workloads?

• How can we allow domain scientists to easily test co-programming of QPUs 
with classical HPC systems?

• Can we take advantage of GPU acceleration for circuit synthesis, classical 
optimization, and error correction decoding?
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Researching & Developing the Quantum Computers of Tomorrow Requires Powerful Simulations Today

ENABLING LARGE-SCALE QUANTUM CIRCUIT SIMULATIONS VIA CUQUANTUM
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State vector simulation

“Gate-based emulation of the full quantum state”

• Maintain full 2n qubit vector state in memory

• Update the full quantum state every timestep, probabilistically 
sample or perform direct evaluation of expectation values

• Memory capacity and time grow exponentially with the number 
of qubits - practical limit around 50 qubits on a supercomputer

• Can model either ideal or noisy qubits

Tensor network simulation

“Factorized tensor representations of observables”
• Performs a time-optimal sequence of tensor network 

contractions to dramatically reduce memory demands 
in simulating quantum circuits

• Can simulate 100s or 1000s of qubits for practically 
interesting quantum circuits

• Enables approximate compression of the original tensor 
network by simpler tensor networks resulting in a 
drastically reduced computational cost

GPUs are a great fit for either approach

TWO LEADING QUANTUM CIRCUIT SIMULATION APPROACHES
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cuQuantum SDK: Accelerating Quantum Simulation Ecosystem 
High-performance GPU libraries for quantum circuit simulations

• Collection of high-performance GPU libraries for quantum computing researchers and 
engineers to accelerate and scale up their quantum simulators using NVIDIA GPU 
platforms

• Current focus is on offering building blocks for developing efficient and scalable 
quantum circuit simulators needed by the QIS community
• Low-level primitives with high degree of control for advanced simulator developers 

interested in maximal performance

• High-level primitives with high degree of automation and ease of use

• cuStateVec:

• Targeting state-vector based simulator developers

• cuTensorNet:

• Targeting tensor-network-based simulator developers (exact or approximate)

• cuQuantum Appliance:

• NGC docker container for easy deployment

• Offering optimized multi-GPU cuStateVec backend for Cirq/Qsim simulator and 
multi-GPU/multi-node cuStateVec backend for IBM’s Qiskit/Aer simulator

• cuQuantum Python:

• Allows easy integration with Python applications and frameworks

• Provides low-level Python bindings for both cuStateVec and

cuTensorNet C API with flexible calling conventions

• Provides high-level Pythonic API

• Interoperable with NumPy/CuPy/PyTorch CPU & GPU tensors

• Open-sourced on GitHub (NVIDIA/cuQuantum) & pip-/conda- installable
https://developer.nvidia.com/cuquantum-sdk

Quantum Computing Frameworks

Quantum Circuit Simulators

cuQuantum

cuStateVec

GPU Accelerated Computing

Quantum Computing Applications

cuTensorNet

https://developer.nvidia.com/cuquantum-sdk
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• cuStateVec: Library for accelerating and scaling state-vector based quantum circuit simulators:

• Most computations are “in-place” to reduce memory demands

• Provides building blocks to cover common use cases:

1) Apply gate matrix
Dense/diagonal/generalized permutation matrices

2) Apply exponential of a Pauli matrix product

3) Expectation value
Matrix or Pauli operator as an observable

4) Measurement
Batched Z-basis measurements, Z-product basis measurement

5) Sampling the state-vector

6) Support of batched state-vectors (multiple state-vectors)

7) State vector segment insertion/extraction

8) In-place qubit reordering for multi-GPU and multi-node simulators

• Easy integration & adoption for a wide variety of frameworks and programming languages

• Also available in the cuQuantum Appliance container (standalone as well as a Cirq/Qsim backend)

custatevecStatus_t custatevecApplyMatrix(
custatevecHandle_t handle,
void *sv,
cudaDataType_t svDataType,
const uint32_t nIndexBits,
const void *matrix,
cudaDataType_t matrixDataType,
custatevecMatrixLayout_t layout,
const int32_t adjoint,
const int32_t *targets,
const uint32_t nTargets,
const int32_t *controls,
const int32_t *controlBitValues,
const uint32_t nControls,
custatevecComputeType_t computeType,
void *extraWorkspace,
size_t extraWorkspaceSizeInBytes)  

cuquantum.custatevec.apply_matrix(
handle,
sv,
sv_data_type,
n_index_bits,
matrix,
matrix_data_type,
layout,
adjoint,
targets,
n_targets,
controls,
control_bit_values,
n_controls,
compute_type,
workspace,
workspace_size)

C API

Python API

A library for building efficient state-vector based quantum circuit simulators, not a simulator per se

cuStateVec Module of cuQuantum

2:05 PM Dr. Shinya Morino, Nvidia Tokyo
NVIDIA cuQuantum SDK: Accelerating Quantum Circuit simulation II – cuStateVec
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TENSOR REPRESENTATION OF QUANTUM CIRCUITS

Quantum Circuit as a Tensor Network:

Graphical Tensor Network Algebra Notation
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Wavefunction:

Vector in dim(24) space:
N qubits → ℂ#$ Hilbert space

Inner product
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( ()

Matrix-vector product
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Ω-+ Θ&-

Matrix-matrix product
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Outer product
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, /) (

Tensor contraction

Ω-+&Θ0-

Implicit summation over repeated indices in tensor products

,) ( ,) (
+

Tensor addition (same shape)

Ω+&- + Θ+&-

, /)

Tensor hypercontraction

Λ0-+ = Ω&-+ Θ0-&
Covariant (lower) and Contravariant (upper)

index distinction only matters with
non-orthogonal metrics

(

Tensor-algebraic techniques form powerful numerical machinery for quantum many-body methods



• Problem of the Optimal Contraction Path:

Obtain a complete list of pairwise tensor contractions with the minimal 

time to solution (NP-hard optimization problem)

Quantum Circuit as a Tensor Network
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Any slice of the wavefunction tensor

is accessible by tensor contraction

(Markov, Shi, SIAM J. Comput.,
https://doi.org/10.1137/050644756)

Intermediate Tensors
(can grow large in size,

require slicing)

Output tensor:

* Full wavefunction;

* Wavefunction slice;

* Individual amplitude;

* Expectation value;

The size of intermediate tensors and the total 

Flop count are highly sensitive to the chosen 

contraction path!

TENSOR REPRESENTATION OF QUANTUM CIRCUITS
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cuTensorNet Module of cuQuantum
A library for building efficient tensor-network based quantum circuit simulators, not a simulator per se

• cuTensorNet: Library for accelerating and scaling tensor-network based quantum circuit simulators:
• Provides primitives to cover common use cases:

• Calculate a cost-optimal path for tensor network contraction:
• Recursive hyper-graph partitioning and hyper-optimization are used to find a contraction path with the 

lowest total cost (Flop count or time-to-solution estimate)
• Optimized slicing is introduced to reduce the maximum intermediate tensor size and create parallelism for 

distributed execution on multi-GPU/multi-node platforms
• Define the optimal execution plan and execute tensor network contraction:

• Leverages cuTENSOR heuristics for selecting the best pairwise tensor contraction kernels
• Automatic parallelization of the contraction path optimization and execution across multiple GPUs and 

multiple/many nodes
• Automatic intermediate tensor caching and reuse to reduce time taken by repeated tensor network 

contractions: Computing many amplitudes, direct bit-string sampling, etc.
• High-level API for defining tensor network states and computing their properties:

• Quantum gate application
• Computing reduced density matrices for a tensor network state
• Direct bit-string sampling of a tensor network state (e.g., sampling output bit-strings from a given quantum 

circuit)
• Compute gradients of a tensor network with respect to selected input tensors (training)

via the backpropagation algorithm
• Contract/decompose tensor API for implementing approximate tensor-network-based simulators based on 

MPS, PEPS, and other tensor network factorizations.
• Interoperable with other libraries/frameworks (e.g., NumPy, cuPy, pyTorch)
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§ Tensor network contraction path optimizer:

§ Tensor network simplification

§ Hyper-optimizer (global search):

§ Recursive k-way graph partitioner

§ Tensor mode slicing

§ Subtree reconfiguration

cuTensorNet Module of cuQuantum
Tensor contraction path optimizer
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cuTensorNet Module of cuQuantum
Tensor contraction path optimizer: Performance

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 2021 https://quantum-journal.org/papers/q-2021-03-15-410/pdf/
[2] opt-einsum https://pypi.org/project/opt-einsum/

Sycamore 53-qubit Random Quantum Circuit
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Tensor contraction performance

cuTensorNet Module of cuQuantum
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Tensor contraction performance

cuTensorNet Module of cuQuantum
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Tensor contraction performance

cuTensorNet Module of cuQuantum



Hybrid quantum-classical programming framework (e.g., CUDA Quantum)

Quantum circuit simulator (tensor networks)

Hybrid quantum-classical application (domain application)

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

cuTensorNet: Distributed execution on multiple/many GPUs (parallelism over TN slices)

cuTensorNet Module of cuQuantum: Scalability
Distributed multi-GPU/multi-node tensor network contraction via cuTensorNet

Quantum Circuit Tensor Network

Tensor Network
Slices

Tensor Network
Slices

GPU-Accelerated
Supercomputer



Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

cuTensorNet Module of cuQuantum: Scalability
Distributed multi-GPU/multi-node tensor network contraction via cuTensorNet

Tensor Network
Slices

Tensor Network
Slices

GPU-Accelerated
Supercomputer

Simulation of a single amplitude of the 53-qubit random quantum circuit
with 14 layers (Google’s Sycamore)



Tensor Network State:
• initialize
• applyTensor
• applyNetworkOperator
• updateTensor
• finalize
• configure
• prepare
• compute

Quantum Circuit Simulators

Quantum Chemistry Simulators

Condensed Matter Simulators

cuTensorNet Module of cuQuantum: Generic Polymorphic High-Level API
High-level building blocks for defining and computing tensor network states



Tensor Network State:
• initializeXXX (e.g., XXX=MPS)
• applyTensor
• applyNetworkOperator
• updateTensor
• finalizeXXX (e.g., XXX=MPS)
• configure
• prepare
• compute

Pure Tensor Network State Mixed Tensor Network State

MPS Pure Tensor Network State

Quantum Circuit Simulators

Quantum Chemistry Simulators

Condensed Matter Simulators

cuTensorNet Module of cuQuantum: Generic Polymorphic High-Level API
High-level building blocks for defining and computing tensor network states



Tensor Network State:
• initializeXXX (e.g., XXX=MPS)
• applyTensor
• applyNetworkOperator
• updateTensor
• finalizeXXX (e.g., XXX=MPS)
• configure
• prepare
• compute

Pure Tensor Network State Mixed Tensor Network State

MPS Pure Tensor Network State

Tensor Network Operator

Quantum Circuit Simulators

Quantum Chemistry Simulators

Condensed Matter Simulators

cuTensorNet Module of cuQuantum: Generic Polymorphic High-Level API
High-level building blocks for defining and computing tensor network states



Tensor Network State:
• initializeXXX (e.g., XXX=MPS)
• applyTensor
• applyNetworkOperator
• updateTensor
• finalizeXXX (e.g., XXX=MPS)
• configure
• prepare
• compute

Pure Tensor Network State Mixed Tensor Network State

MPS Pure Tensor Network State

State Accessor

Reduced Density Matrix

Sampling

Expectation Value

Tensor Network Operator

Quantum Circuit Simulators

Quantum Chemistry Simulators

Condensed Matter Simulators

cuTensorNet Module of cuQuantum: Generic Polymorphic High-Level API
High-level building blocks for defining and computing tensor network states

• Reduced Density Matrices and State Sampling are available in cuQuantum-23.06
• State Accessor, Expectation Value and MPS states are expected in the upcoming release



Quantum Circuit as a Tensor Network
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Tensor Network Computing: Tensor Network State
cutensornetCreateState: Creates an empty tensor network state (vacuum)

Tensor Network State (Vacuum)
• Specify mode (qudit) dimensions
• Specify purity
• Specify data type



Quantum Circuit as a Tensor Network

Q
ud

it
Re

gi
st

er
Quantum Gates
(state evolution)

Tensor Network Computing: Tensor Network State
cutensornetStateApplyTensor: Applies tensor operators

• Apply arbitrary qudit gates



Quantum Circuit as a Tensor Network
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Tensor Network Computing: Amplitudes Accessor
cutensornetStateAccessor: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute

* Upcoming feature



Quantum Circuit as a Tensor Network
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Tensor Network Computing: Amplitudes Accessor
cutensornetStateAccessor: Configure, Prepare, Compute

* Upcoming feature

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute



Quantum Circuit as a Tensor Network
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Conjugated Quantum Circuit

Tensor Network Computing: Expectation Values
cutensornetStateExpectation: Configure, Prepare, Compute

* Upcoming feature

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute



Tensor Network Computing: Expectation Values
cutensornetStateExpectation: Configure, Prepare, Compute

* Upcoming feature

Quantum Circuit as a Tensor Network
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Conjugated Quantum Circuit

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute



Tensor Network Computing: Reduced Density Matrices
cutensornetStateMarginal: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute

Quantum Circuit as a Tensor Network
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2-RDM

Conjugated Tensor Network

=



Tensor Network Computing: Reduced Density Matrices
cutensornetStateMarginal: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the result
• Update: Update tensors, recompute

Quantum Circuit as a Tensor Network
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(state evolution)
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Conjugated Tensor Network
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Light cone simplification happen automatically behind the scene



Quantum Circuit as a Tensor Network
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Tensor Network Computing: Output Tensor Sampler
cutensornetStateSampler: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute any number of samples
• Update: Update tensors, recompute
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Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

Hybrid HPC Node

CPU GPU

cuTensorNet Module of cuQuantum: Scalability
Distributed multi-GPU/multi-node tensor network contraction via cuTensorNet

Tensor Network
Slices

Tensor Network
Slices

GPU-Accelerated
Supercomputer

Simulation of a single amplitude of the 53-qubit random quantum circuit
with 14 layers (Google’s Sycamore)

Direct bit-string sampling of the GHZ quantum circuits
with 64 and 127 qubits

* Scheduled for an upcoming release



Quantum Circuit as a Tensor Network
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Tensor Network Computing: MPS Factorization of the State
cutensornetStateFinalizeMPS: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute the MPS factorized state
• Update: Update tensors, recompute



Quantum Circuit as a Tensor Network

Tensor Network Computing: Output Tensor Sampler
cutensornetStateSampler: Configure, Prepare, Compute

• Configure: Set computation parameters
• Prepare: Prepare computation
• Compute: Compute any number of samples
• Update: Update tensors, recompute
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Amplitudes Accessor, Expectation Value,
Reduced Density Matrix, and Sampler will
work with any tensor network state



Initial state

2-body quantum gate application
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Tensor Network Computing: MPS Factorization

• The necessary contract-decompose low-level
primitives are provided by cuTensorNet:
• Decompose a tensor into two tensors (SVD, QR)
• Apply-Split: Applies a tensor operator to two

MPS tensors, followed by decomposition back
into two updated MPS tensors

MPS state evolution via low-level cuTensorNet primitives



Absorbed a layer of 1-body quantum gates
(no entanglement yet)

2-body quantum gate application
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Tensor Network Computing: MPS Factorization

• The necessary contract-decompose low-level
primitives are provided by cuTensorNet:
• Decompose a tensor into two tensors (SVD, QR)
• Apply-Split: Applies a tensor operator to two

MPS tensors, followed by decomposition back
into two updated MPS tensors

MPS state evolution via low-level cuTensorNet primitives



Absorbed a layer of 2-body quantum gates:
(entanglement created)

2-body quantum gate application
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Tensor Network Computing: MPS Factorization

• The necessary contract-decompose low-level
primitives are provided by cuTensorNet:
• Decompose a tensor into two tensors (SVD, QR)
• Apply-Split: Applies a tensor operator to two

MPS tensors, followed by decomposition back
into two updated MPS tensors

MPS state evolution via low-level cuTensorNet primitives



Absorbed another layer of 2-body quantum gates:
Entanglement grows (if MPS bond dimension allows)

2-body quantum gate application
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Tensor Network Computing: MPS Factorization

• The necessary contract-decompose low-level
primitives are provided by cuTensorNet:
• Decompose a tensor into two tensors (SVD, QR)
• Apply-Split: Applies a tensor operator to two

MPS tensors, followed by decomposition back
into two updated MPS tensors

MPS state evolution via low-level cuTensorNet primitives



2-body quantum gate application

cuTensorNet Module of cuQuantum: MPS primitives
Contract-decompose primitives for implementing approximate tensor network simulators
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Exploring Reduced/Mixed Precision Arithmetic in cuTensorNet
Composite BF16/9 tensor core arithmetic fully reproduces the FP32 precision

• 53-qubit Sycamore random quantum circuit with
12 layers of random gates and computed probability 
amplitudes for 64 bit-strings

• 649216 total pairwise tensor contractions

• 1.7% of the tensor contractions account for 95% of the total 
0.83 PFLOPs (k-dim >= 16)

• We offload these to BF16/9 tensor cores

• The relative error of the computed probability amplitudes 
with BF16/9 is slightly less than FP32 when compared to the 
FP64 baseline

• Variation of amplitude values due to the use of different 
tensor network contraction paths for FP32 compute 
introduces larger differences than BF16/9

• The FP32 inputs are decomposed into 3 scaled BF16 components

a = a0 + 2-8.a1 + 2-16.a2
b = b0 + 2-8.b1 + 2-16.b2

• The multiply-add operation is computed as a sum of 9 scaled partial 
products

a * b + c =       a0.b0 + 2-8 .a0.b1 + 2-16.a0.b2
+ 2-8 .a1.b0 + 2-16.a1.b1 + 2-24.a1.b2
+ 2-16.a2.b0 + 2-24.a2.b1 + 2-32.a2.b2 + c

Path0
FP32 vs FP64

Path0
BF16/9 vs FP64

Path0
BF16/9 vs FP32

FP32
Path1 vs Path0

FP32 Path1
vs FP64 Path 0



Summary
• GPU computing can drastically accelerate emulation of quantum processors and execution of classical 

pre- and post-processing steps (error correction, error mitigation, device calibration, etc.)

• CUDA Quantum extends the CUDA programming model to quantum processors

• CUDA Quantum enables tight integration of CPU, GPU, and QPU accelerators

• cuQuantum is a library of efficient GPU-accelerated computational primitives for quantum circuit 
simulator developers: Provides state-vector and tensor-network simulator building blocks

• cuQuantum delivers significant speed-ups in state-vector and tensor-network based simulators

• cuQuantum enables multi-GPU/multi-node parallelization in both kinds of simulators for clouds and HPC

• The new high-level cuTensorNet API provides easy-to-use high-level building blocks for TN simulators 
automatically enhanced with parallelization, intermediate reuse, and other performance optimizations

• cuTensorNet supports tensor network gradients via back-propagation, enabling easy integration with 
machine learning frameworks (the new ML-native Pythonic API are upcoming)

• cuQuantum is developed to ease the life of simulator developers, let us know what else you need

https://github.com/nvidia/cuda-quantum | https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda-quantum 
https://developer.nvidia.com/cuquantum-sdk

https://developer.nvidia.com/cuquantum-sdk
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