Waferscale Superconducting MCM

Rabindra N. Das

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

244 Wood Street Lexington, Massachusetts 02421-6426

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

© 2023 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
Superconducting Electronics For High-Performance Computing
S-MCM Flip-Chip Approach
Objectives
S-MCM packaging
Large MCM with single mask exposure
Snitched MCM
Waferscale MCM
Summary
Superconducting Electronics For High-Performance Computing

Candidate Beyond-CMOS Technologies

- High speed and ultralow switching energy
- Lossless data transmission
- Waferscale integration
Superconducting Multi-Chip Module (S-MCM)

- 50-ohm clock line
- 10-20-ohm data line
- μ-bump pitch: 35 μm

Advantages of MCM Process:
- μ-bump on MCM side
- Known good chips
- Combine multiple technologies
16 Chip MCM

16-chip MCM: 32mm X 32mm
SFQ Chip: 5mm X 5mm
Objectives

Develop a cryogenic package with the following attributes:

- Large MCM
 - Single mask exposure (>32mmX32mm)
 - Stitched mask (Stitched MCM)
 - Combined lithography (Waferscale MCM)

- Large scale integration
 - Accommodate multiple size chips

- Reliable

- Compatible with SFQ, CMOS and Qubit packaging
S-MCM Packaging

Bumped S-MCM

- Superconducting MCM wafer
- Spin resist
- Expose & Develop
- Plasma clean
- Metal deposition
- Resist lift off
- Bumped S-MCM

Flip-chip bonding to daisy chain chip

Packaging

Electrical Characterization

Flip-chip S-MCM attached to PCB for 4K testing

I-V curve of flip-chip S-MCM daisy-chain tested at 4K
Solder Coated μ-Bump

Demonstrate flip-chip packaging of 20 x 20 mm\(^2\) chips on MCM

Representative I-V curves of 20X20mm\(^2\) flip-chip daisy chains at 4K
Resistance: 50-100 μΩ/bump @4K
Large MCM

- Demonstrate 0.8-mm lines around periphery for 48 x 48 mm² MCM with single mask exposure
- Demonstrate MCM bonding with two 20 x 20 mm² chips
Large Superconducting Chip

MCM: 32mm X 32mm
16 (5mm X 5mm) chips

MCM: 48mm X 48mm
2 (20mm X 20mm) chips
Stitched S-MCM

Stitched MCM (70mmX70mm)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

2 MCMs/wafer

0.8μm line at stitch boundary with 0.25μm overlap

MCM439 RT Resistance Data

Wafer Map

Number of RT tested Structures/wafer: 288
RT tested stitched structures/wafer: 96

Stitched MCM(96mmX96mm)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

1 MCM/wafer
200mm MCM Wafer Map

MCM (35mmX35mm)

16 MCMs/wafer
(62.3% wafer area)

Stitched MCM (70mmX70mm)

2 MCMs/wafer
(31.2% wafer area)

MCM (48mmX48mm)

6 MCMs/wafer
Reticle:48mmX48mm
(44% wafer area)

Stitched MCM (96mmX96mm)

1 MCM/wafer
Largest MCM for 4masks/layer
(29.3% wafer area)

Quantum Computing: Devices, Cryogenic Electronics and Packaging│ October 24 – October 25, 2023
Combination of i-line and direct write lithography can reduce total number of masks
Only critical layers containing 0.8-1µm lines can use i-line lithography
Direct write lithography suitable for wider (>1µm) lines
Utilize full wafer real estate
Full Wafer MCM

- 48mmX48mm reticle
- 48mmX48mm reticle
- 96mmX96mm stitched reticle
- 200mm Wafer-scale routing

48mmX48mm MCM
- 96mmX96mm stitched MCM

- 200mm full wafer MCM

- 10-50Ω line
- Stitched MCM 10-50Ω line
- Waferscale MCM 10-50Ω line
Full Wafer MCM Packaging Development

Stitched i-line patterning (96 x 96 mm² on MCM)

Heidelberg direct-write patterning for fan-out wiring (> 1 μm)

Key fabrication processes demonstrated for full-wafer S-MCM’s with lossless superconductive interconnects
• Evaluated large MCM (48 x 48 mm\(^2\)) with single i-line mask exposure
• Demonstrated flip-chip packaging of 20 x 20 mm\(^2\) SFQ chips on MCM
• Developed sequential exposure of two photomasks (A and B), with small overlap (stitched), to realize larger combined MCM (up to 96 x 96 mm\(^2\)) circuit
• Combination of i-line and direct write photolithography demonstrated full wafer MCM fabrication capability
Acknowledgements

Mark Gouker, Jonilyn Yoder, Leonard M. Johnson, Dan Pulver

Sergey Tolpygo Rabindra Das Mike Augeri
Vlad Bolkhovsky Peter Murphy Peter Baldo
Alex Wynn Karen Harmon Michael Hellstrom
Scott Zarr Justin Mallek Gerry Holland
Ravi Rastogi Terry Weir Chris Thomaraj
Evan Golden Rich D’Onofrio Tom Slanda
David Kim Neel Parmer

Microelectronics Laboratory