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Source: www.ibeo-as.com

Autonomous driving

Source: www.ptc.com

Intelligent manufacture

Smart city

Source: mashdigi.com

Smart service

Source: www.jeanhillstudios.com

AI for X
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Wire break

Reliability: The major concern of high-tech industries
Warranty claims: 2% of  global annual industrial revenue; 

delayed product release; liability; reduced consumer confidence
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Business consequences

Source: SEC, via Warranty Week

Warranty claims US companies

Company

2009 
Accrual
s     in 
Mio $

2009 
Claims Rate 
(% of sales)

2008 
Claims 

Rate 
(% of sales)

2007 
Claims 

Rate 
(% of sales)

Lexmark International 84 9.0% 8.4% 13.0%
Garmin Ltd. 165 5.6% 3.8%
Hewlett-Packard Co. 2,701 3.6% 3.7% 2.9%
Eastman Kodak 88 3.2% 1.9%
Whirlpool Corp. 396 3.0% 2.8% 3.8%
Caterpillar Inc. 880 3.0% 2.6% 2.2%
IBM Corp. 374 2.3% 2.0% 2.8%
Dell Inc. 995 2.3% 2.0% 2.2%
Microsoft Corp. 148 2.1% 2.4% 6.2%
Black & Decker Corp. 92 1.9% 2.0% 1.8%
Ford Motor Co. 1,561 1.5% 1.7% 2.6%
Cisco Systems 381 1.5% 1.2%
Motorola Inc. 301 1.4% 1.5% 2.0%
Harley-Davidson Inc. 51 1.3% 1.0% 1.2%
Apple Inc. 303 1.0% 0.9% 1.0%
General Electric Co. 780 1.0% 1.2% 0.8%
Johnson Controls 257 1.0% 0.8%

Honeywell International 188 0.8% 0.8% 0.7%
Boeing Co. 167 0.5% 0.5% 0.7%

NA: www.recalls.gov
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Past solutions with handbooks 
Since 1960s, several reliability prediction handbooks have been published, with
applications in Aviations and Defenses, Telecommunications, Automotives, Electronics
and Computers, and Mechanical Equipments.

Aviations and Defenses Telecommunications
SN 29500

Automotives

Electrics and Computers

Mechanical Equipments Electronics
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Past solutions with empirical models
Arrhenius Model, Eyring Model, Voltage/Field Effect Model, Current Model, Power Model, 

Temperature Cycling Models, Humidity Models…
Electromigration model

1 exp
MTF

nAj
kT
f-æ ö= ç ÷

è ø

Black’s model

where MTF, median time to failure (hrs), A pre-factor constant, j
current density (A/m2), f activation energy (eV), k Boltzmann constant
(J/K), T temperature (K)

Solder fatigue 
models

Coffin-Manson model
Engelmaier model
Darveaux model
Norris-Landzberg model
Solomon model
…

Humidity driven failure models

Lawson model:
Eyring model:
Peck-Zierdt model:
Reich-Hakim model:
Weick model:
…

2/E kT bRH
ft A e eD= ×

ISPSD 2015, 385-388
/E kT B RH

ft A e eD ×= ×
[ / (ln )]E kT B RH

ft A e D += ×
[ ( 273) ]B T RH

ft Ae - +=
/ ( / ) ( )E kT B T RH C RH

ft A e e eD × ×= × × ×

where RH= relative humidity

• Need comprehensive knowledge of failures 
• Can’t consider the field’s uncertainties and dynamics
• Require significant time and operation cost, experience based 
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• MCE grows fast
• “Performance and lifetime on demand” becomes essential
• DT will be the key enabler

Digital Twin for Mission Critical Electronics (MCE)
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Digital Twin (DT) contains 3 main parts: 
• Physical products/systems in Real Space, i.e. materials, products, processing, operation, 

recycle…
• Virtual products/systems in Virtual (digital) Space, i.e., simulation models….. 
• Connectivity of data, information and instruction that connect the virtual and real worlds together

Virtu
al

Physical

Virtu
al
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3 Connectivity Scenarios (combination is also possible)   

Cloud connection

• Real-time monitoring/data 
filtering/transmission 

• Cloud platform, complicated 
simulation models, cloud 
computing

• Output filtering, intelligent control
• Separated closed loop 

Embedded connection 

• Real-time monitoring/data 
filtering/transmission 

• Highly reliable DT chip (or 
embedded in MCU), with built in 
simpler/compact models and edge 
computing

• Integrated close loop, control & 
decision-making

p Modeling as a supporting tool
p No closed loop
p Virtual prototyping
p Product and process design

Weak connection
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The Landscape of  Digital Twin

Testing strategy and Test platform for Verification

GuidingControlSensingGuiding

Production
Usage & 
Service

Maintenance 
& Repair

Design

Scientific Challenges:
Virtual prototype; Design rules 
and specifications; AI assisted 

co-design. etc.

Process Modelling

Scientific Challenges:
Multiphysics/Multiscale/Probabil
istic dynamic simulation; optimal 

process,  planning. etc.

Health Monitoring and Prognostics

Scientific Challenges:
Data-driven algorithms for fault diagnostics and 
prognostics; Condition based maintenance. etc.

Product Prototype

Scientific Challenges:
Rapid prototype; First-time 

right design, D4X, etc.

Manufacturing

Scientific Challenges: 
Equipment monitoring; Optimal 
process; defect control; D4X etc.

Vi
rt

ua
l w

or
ld

Ph
ys

ic
al

 w
or

ld

Recycle

Lifecycle Modelling

Scientific Challenges:
Lifecycle assessment; Carbon 

footprint analysis . etc. 

Smart Health Monitoring and Value-
added Service 

Scientific Challenges: 
Sensing and in-situ monitoring; Accurate fault alarm 

and remaining useful life prediction; Proactive 
maintenance . etc.

Circular Economy

Scientific Challenges: 
Lifecycle cost optimization; minimise 

carbon footprint,  etc.

Material 
characterization

Design

Materials

Scientific Challenges:
Ab-initio/MD/FEM; AI assisted 

material design, etc.

Material Preparation

Scientific Challenges:
Rapid prototype; First-time 

right design, D4X, etc.

GuidingValidating

Source: Kouchi Zhang & Jiajie Fan, Heterogeneous Integration Roadmap

Validating Monitoring GuidingValidating
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MD assisted Material design and modeling
• Sintering mechanism

Impact of P, T, t, etc.
• Anti-oxidation coating • MEMS micro-hotplate based 

time-resolved in-situ SEM

MD assisted property characterization
• Oxidation• Sulphidation• Electromigration

Material modeling and characterization: NanoCu
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Multiscale modeling from First principles simulation to molecular 
dynamics simulation to finite element modeling

Copper SiO2

Cu-OO bonded Cu-O bonded Cu-Si bonded

First principles simulation Molecular dynamics simulation Finite element simulation

Z Cui, X Chen, X Fan, GQ Zhang, Interfacial Properties of Cu/SiO2 using a Multiscale Modelling Approach in Electronic Packages, EuroSimE 2018.

Material modeling and characterization: Cu/SiO2 interface
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Material modeling and characterization: Phosphors
Ab-initio/First principle modeling of hydrolysis mechanism for R6535 

CaAlSiN3:Eu2+ red phosphor

2
3 2 2 3( ) 2 ( ) 2 ( )CaAlSiN s H O l Ca OH H AlSiN s+ -+ ® + +

Moisture driven degradation of CaAlSiN3:Eu2+ red phosphor can be attributed to 
the initially dissolved of Ca2+ and OH-, gradually crashed crystallinity of host 

lattice and the increased surface roughness from reaction residues. 

J. Fan, G.Q. Zhang et al. Journal of Luminescence 219, 116874, 2020

First principles simulation
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Material modeling and characterization: Phosphor/silicone interface

Hydrolyzed  CaAlSiN3[010] surface, the minimum-energy 
pathway along (a) [100] direction. (b) [001] direction. 

Pristine CaAlSiN3[010] surface, the minimum-energy 
pathway along (a) [100] direction. (b) [001] direction. 

Ab-initio/First principle modeling of mechanical properties for 
Phosphor/silicone interface 

Z. Cui, J. Fan, G.Q. Zhang et al. Applied Surface Science 510, 145251, 2020
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MD based low-k material/interface design

Motivations
• Develop/design reliable low-k

material and interface
• Using molecular dynamics to

model the nanoscale material
and interface

Scientific challenges
• Modeling
-Amorphous and porous material
-Chemical bonding status at interface
• Experimental comparison

Approaches

Arrange chemical groups Energy minimization 

Results
• Prediction of mechanical 

properties of low-k material
• Prediction of interfacial 

strength of low-k material

Molecular simulation strategy for mechanical modeling of amorphous/porous 
low-dielectric constant materials.  Appl. Phys. Lett. 92, 2008
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Example: Molecular dynamics analysis for multi-scale 
reliability assessment of CNTs

Problem
§ Mechanical stability of CNTs will affect 

the reliability and performance
Scientific challenge
§ Computational studies overcome the 

limitations of experimental approaches 
and give extra control on parameters 
such as defect position

Results
§ Defects near the deflection points of 

the CNT, reduce the critical buckling 
load (about 70%) at low temperature

§ Defects do not significantly alter the 
critical buckling load at room 
temperature0 2 4 6 8 10 12
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Effects of single vacancy defect position on the stability of carbon nanotubes, 
Journal of Microelectronics Reliability, 52, (2012)

Image: Özlem Sardan, DTU
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Macroscale phenomena: Different failure modes of 
CNT pillar with and without a-SiC coating

Without a-SiC coating

With a-SiC coating

Adv. Funct. Mater. 2016

Simplified simulation model

Nanoscale simulation Microscale simulation Macroscale simulation 

Material modeling and characterization: CNT pillars
Multiscale modeling of failure modes for CNT pillar with and without a-SiC coating
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Molecular dynamic analysis (MDA)

Young’s modulus, Fracture 
strain, Ultimate stress

Experiments

Finite element anlaysis (FEA)

Stress 
distribution

Benchmarking

Density functional theory (DFT)
Bandgap changeà Current change

Defects
Temperature

Optimizing the 
substrate of WS2

stress sensor

Material modeling and characterization: WS2 sensor
Effects of Defect and Temperature on the Mechanical 

Performance of WS2: A Multiscale modeling

H Tang, D Hu, Z Cui, H Ye, G Zhang, The Journal of Physical Chemistry C 125 (4), 2680-2690, 2021
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𝑍∗𝑒𝜌𝑗 +Ω
𝜕𝜎
𝜕𝑥 = 0

𝑗𝐿 =
(𝜎"#$−𝜎"%&)Ω

𝑍∗𝑒𝜌

• Electromigration measurement

• Characterization

Cui Z. Fan X. J. Zhang G.Q. et al., J. Appl. Phys., 2019

Multi-Physics Fully-coupled Modeling

Material modeling and characterization: Electromigration
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Physics of Failure (PoF) Based Reliability Modeling

Electronic 
Simulation

• Power distribution
• Critical output

Circuit-Field Model

Thermal 
Simulation

• Temperature
• Model 

Parameters

Thermal Model

Failure or Degradation
• Temperature dependent
• Time dependent
• Model  Parameter

Temperature/time dependent 
Failure or Degradation model 

Physics of Failure

Stochastic Process Modelling

Monte Carlo Simulation

Material Properties 

Design Information

Application Conditions

History of Electronic-Thermal Behavior

Reliability/ Lifetime/ MTTF

Critical Component & Material 
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• Moisture diffusion –
water activity theory

• Vapor pressure theory
• Effective stress theory

Curing

T ¯

(TH) RH ­

Thermal 
mismatch

Hygroscopic 
swelling

(Reflow) RH ¯ T 
­ De-swelling

Thermal mismatch
Vapor pressure

Multi-
physics 

Moisture 
diffusion

Thermal Mechanical 
stress

Vapor 
pressure

A Moisture-Thermal-Mechanical coupling modeling of 
moisture-induced stresses of IC packaging during reflow 

process

• Fan XJ, Moisture sensitivity of plastic packages of IC devices, Springer, 2010.
• Chen L et al., Microelectronics Reliability, Vol. 75, 2017, pp. 162-170. 
• Chen L et al., Appl. Mech. Rev., 70(2), 2018, pp. 020803
• Ma L et al, 2019 IEEE 69th, 2019, pp. 806-810.
• Chen L et al., 2020 ECTC.

Process design and modeling: Reflow process
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Process characterization: MEMS enabled time-resolved X-ray diffraction for NanoCu sintering

Boyao Zhang, PhD dissertation, TU Delft, 2020

Molecular dynamics simulation: Pressure-assisted NanoCu sintering

Dong Hu, Zhen Cui G.Q. Zhang et al., Results in Physics, 2020

Process design and modeling: Sintering process 
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Yuan	C	and	Lee	C.C.,	2020	21th EuroSimE
Yuan	C	et	al,	2019,	20th EuroSimE

Liu	W	et	al,	2020	70th	ECTC
Chou	P	et	al,	2019	69th		ECTC

Lifetime Experiment
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Process design and modeling: FC packaging process 
AI assisted highly reliable Flip chip packaging design
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Solder Mask

Solder Mask

RDL-up

RDL-down

SiC 
MOSFET

BT prepreg

BT prepreg

BT laminate

BT prepreg RDL Blind via Through via

BT laminate Soldermask

HS-MOS LS-MOS

X1

X2

Xn

Y1

Ym

秉ij 秉jk

Input layer
Hidden layer

Output layer

After 
RSM

After 
ACO-
BPNN

Before 
optimization

Percentage 
improvement 

by RSM

Percentage 
improvement 

by ACO-
BPNN

Temperature 
T (°C) 180.71 180.40 187.02 3.38% 3.50%

Stress σ (MPa) 24.453 24.728 27.490 11.05% 10.04%

Fan-Out Panel-Level SiC MOSFET 
Power Module 

Thermal optimization

Thermal-Stress optimization

Ant Colony Optimization-Back Propagation 
Neural Network

Y. Qian, F. Hou, J. Fan, Q. Lv, X. Fan and G. Zhang, IEEE Transactions on Electron Devices, doi: 10.1109/TED.2021.3077209.

Process design and modeling: SiC MOSFET module
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Capped-Die Flip Chip Package 
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BGA outline

• Warpage-free packaging with a capped-die flip chip 
package co-design (cap/board thickness, underfill 
property…).

Shen Y et al., IEEE Transactions on CPMT  6(9), 1308 – 1316. 2016
Fan XJ et al., IEEE Transactions on CPMT. 2(11), 1802-1810, 2012. 

• WLP placement/secondary component at system level.

Process design and modeling: Chip/Package/System Co-Design



Problem & Challenges
Multi-physics; multi-failure mode; 
non-linear  & time dependent; 
simulation-based optimization

3. Themert results (new design rules)

Objective
Develop IC/package co-design tool that can ensure the thermo-
mechanical reliability, as the functions of waferfab backend 
process and packaging design parameters

Simulation tool

DOE RSM

Design specification

Criteria
satisfied?

N

Y

Optimization
-maximum & minimum
-parameter sensitivity
-robust design

Reliable &efficient 
parametric models

Response
parameter(s)

Die length ThicknessSt
re

ss

Design parameters
and spaces

Methods

Example: CMOS 90/65nm IC/packaging co-design 



Heterogeneous Integration Roadmap Workshop 
Moving towards a new paradigm

Chip 
Design 
Flow

Package 
Design 
Flow

System 
Design 
Flow

Electrical 
Model &
Analysis

Thermal 
Model 

& 
Analysis

Mechanic
alModel & 

Analysis

Chip 
Design 

Package 
Design 

System 
Design 

Co-Design

Electrical 
Model &
Analysis

Thermal 
Analysis

Mechanic
al Analysis

Electrical 
Analysis

Multi-Physics

Model

TODAY Future
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Optical Performance Tests

Electrical Performance Tests

IGBT Test Equipment from DYNEX
…

Optical Electrical

RF
…Functions and Performances

Functional Performance Test
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Testing strategy 
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140C
 for 3 

m
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Test Platforms and Methods

Accelerated Reliability 
Qualification and Test

Material Characterization

XRD

TEM

DMA

FTIR

Thermal Tests

Thermal resistance and Junction 
temperature testing

Basic Test

Goals:
§ Cost effective testing strategy and test methodologies; § Automated test pattern generation, data analysis and diagnosis flows; §

Multifunctional performance testing; § Multi-scale testing; § Multi domain cross talk; § Complex system testing.

Tests and Qualifications
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Tests and Qualifications
Accelerated Test Method of Luminous Flux Depreciation for LED Luminaires and Lamps

Two-stage accelerated model

𝐴𝐹 =
𝛼|'()
𝛼|'(*

= e +,-!. (
)
0"#

, )
0"$

𝐿12|'(* =
𝐿12|'()
𝐴𝐹

Parameters determination Model validation

An accelerated test method for luminous flux depreciation to reduce the test 
time from 6000 to 2000 hours at an elevated temperature

Reliability Engineering & System Safety, Volume 147, 2016



35
35

• Remote phosphor: PC+ YAG:Ce

• Ageing at 80, 100, and 120 ºC for 3000 h

• Light intensity of: 825, 3300,13200 W/m2

Tests and Qualifications
Accelerated Tests of Remote Phosphor: PC+ YAG:Ce

 Light intensity 
          (W/m2) 

 
825 

 
3300 

 
13200 

Temperature ( °C )    
80 4410 4370 4300 

100 4120 4000 3900 
120 4050 3900 3720 

 

13200 W/m2

Maryam Yazdan Mehr; van Driel, WD; GuoQi Zhang; Microelectronics Reliability, Volume 54, 
Issue 8, pp. 1544-1548, 2014.
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Color Shift-high temperature accelerated ageing tests of LED diffuser/Lens

Inconsistent degradation of wavelength–dependent transmittance 

T
ra
ns
m
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ce

Wavelength/nm

A
bs

or
ba

nc
e

Wave number (cm-1)

Oxidation

Lu GJ, Mehr MY, van Driel WD, Fan XJ, Fan JJ, Jansen KMB, and Zhang GQ, Optical Materials. vol. 45, pp. 37–41, 2015.

Tests and Qualifications

0h 3000h@85deg.C

Discoloration
Diffuser-BPA-PC
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Health monitoring and lifetime prognostics

Prognostics and Health Management of Electronics: 
Fundamentals, Machine Learning, and the Internet of Things, 

2018 John Wiley and Sons Ltd

Monitoring with advanced sensors 

Temperature, Vibration, Pressure etc.

Multiscale/Multiphysics-of-Failure 
modelling

Possible solutions:
First principle, Molecular Dynamics, FE 

Simulation etc.

Machine learning based 
fault diagnostics

Possible solutions:
Support vector machine, k-nearest 
neighbors, Principal components 

analysis, etc.

Data-driven based RUL 
prediction 

Possible solutions:
Stochastic regression, Nonlinear 
Filtering, artificial neural network 

etc.

Maintenance time 

C
os

t (
un

it 
tim

e)

Failure

Maintenance

Optimum

Condition Based 
Maintenance 

Possible solutions:
Bayes' Theorem, Hidden Markov model, 

etc.
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Infrastructure
Sensors

Hardware
Sensing the signal

Data management 
and transfer Car to X 

communication

Data acquisition
In-situ data 
evaluation

FMMEA
Physics of Failure

Data driven approach

Failure modes

Diagnostics

Detecting anomalies
Health Index

Health assessment Prognostics

RUL calculation

Modeling
Model order reduction

Metamodels
Damage evaluation

Diagnostics, Prognostics 
and Health Management 

for Power Electronics

iForce – piezoresistive stress sensor

Health monitoring and Lifetime Prognostics: Fusion method 

A Prisacaru, PhD dissertation, TU Delft, 2021
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AI assisted Simulation & Design 
AI assisted optimal 

design

Machine 
learning 

AI assisted FEA 
simulation

Adv. Theory Simul. 2019, 1800196

AI assisted new material design

NATURE COMMUNICATIONS (2018) 9:4377 

Big data collection Machine learning based feature prediction Material design

Support vector machine
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Material Properties 

Design Information

Application Conditions

History of Electronic-Thermal Behavior

Reliability/ Lifetime/ MTTF

Critical Component & Material 

Stochastic Process Modelling

Monte Carlo Simulation

Electronic 
Simulation

Optical 
Simulation

Failure or Degradation
Temperature/time dependent Failure or Degradation 

Physics of Failure

Thermal Simulation

B. Sun, X.J. Fan, G.Q. Zhang et al., RELIABILITY ENGINEERING & SYSTEM, 2017;
B. Sun, X.J. Fan , G.Q. Zhang et al., IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016

Lifetime Prognostics: PoF method for LEDs 
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Model parameter estimation 
using MCMC (Metropolis 

Hasting)

Projecting long-term lumen 
maintenance based on Physical model 

and predicted parameters   

 Identify physical model describing LED 
degradation

Accelerated degradation 
test to collect lumen 

maintenance data 

Remaining Useful life 
Prediction based on 

failure threshold

0%
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TM-28 Method
BM Approach

-20%
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TM-21 Method

• The exponential decay model is used as the degradation model and the parameters
are estimated based on Markov Chain Monte Carlo (MCMC) sampling and using the
Metropolis-Hasting (MH) algorithm.

• The lifetime prediction results showed that the Bayesian method has better
prediction accuracy compared to the NLS method.

Bayesian method (BM) 

Lifetime Prognostics: Data-driven method for LEDs 

MS Ibrahim, Z Jing, WKC Yung, J Fan, Expert Systems with Applications 185, 115627, 2021
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Metamodel based AI using Adaptive DOE

• A machine learning technique that aims to 
provide the best metamodel fitting capability 
given a certain design space.

• An iterative approach that learn and focus 
on the most interesting regions for the 
creation of a better metamodel.

• A flexible methodology that smoothly scales 
from single output to multi-output 
problems

• A powerful technique that avoids 
undersampling and/or oversampling
issues.
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System level (meter scale)

System reliability 
simulation

RESS, 2017, 163: .14-21

System diagnostics

ICRSE, 2015, 1-6

System prognostics & maintenances 

Spatial lighting simulation

Package and module levels 
(Centimeter scale)

Thermal 
simulation 

of 
multiple 
LED chips IEEE ACCESS. 2017, 5:16459-16468

Fatigue simulation of bonding 
wires

 

ICEPT 2017:1133-1137

Electromigration simulation
ICEPT 2017:1-5

Multiscale & Multiphysics modeling
Chip level (Micro scale)

Electro-optical simulation of 
LED

MR, 2017, 74:173-178

Atomic and molecular scales

First-principles &Molecular 
Dynamics

Adv. Funct. Mater. 2016

Scientific Reports 2016, 6:20621



45HIR Simulation/modeling chapter
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Question: 

“We developed a new product/system, by using 
new materials and new technology, can you tell  
when will it fail and how? “

My answer is NO.
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• In principle, all simulation results are wrong, unless you can prove they 
are right

• Experiments (characterization and verification) will remain as the key 
success factor for simulations and modeling

• Easier to develop sophisticated simulation models, than to build a simple 
ones

• It is easier to make ones’ models beautiful than useful. But, nice pictures 
will not make your boss happy. The ultimate aim is to achieve ”Design on 
Demand” - SOLUTIONS

• Key mission of simulation community: to liberate the simulation experts by 
combined data, physics of failure based models with AI/ML. 
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Current  
• Rapid prototype
• First-time-right design
• Optimized performance

5-10 yrs
• DT chip/function integrated
• Performance and lifetime 

on demand
• D4X  

3-5 yrs
• Sensing and in-situ monitoring
• Accurate fault alarm 
• Remaining useful life

Physical twin challenges: 
• Rapid prototype
• First-time-right design
• Optimized performance & designed in reliability 
• Low cost and reliable sensing and in-situ 

monitoring
• Self healing
• Remaining useful life prediction
• Proactive maintenance
• C2C and lifecycle optimization
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Current 
• Analytical/empirical models
• 1st principle/MD quantitative
• FEA modeling for known 

failure modes
• Trial-and-Error

5-10 yrs
• Multi-scale/multi-physics/full-

process simulations
• Nonlinear, dynamic, probabilistic

/stochastic simulation
• AI/data driven automated

simulation models
• Design 4 X
• Upgradeability 

3-5 yrs
• Integrated 

multiscale/multiphysics
simulations

• Optimisation & design 
rules

• AI assisted & data driven 
simulation and design

• Design for reliability 

Digital twin challenges: 
• Accurate and efficient simulation models
- Nonlinear, time and temp dependent 
- Fast and accurate multi-scale/multi-physics/full-

process simulations
- From deterministic to probabilistic/stochastic 

simulation
- Accurate failure threshold definition
- Multi-failure modes interaction & solution
- Automated model generation and simulation
- Compact models
• Integration of physics of failure based models 

with ML and data driving models 
• Simulation based optimization/design&

operating rule  
• …
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Current  
• Weak connection
• No closed loop
• Limited data of in-situ 

monitoring

5-10 yrs
• Smart in-situ sensing and 

transmission 
• Edge computing
• Highly reliable embedded DT 

chip/integrated with MCU  

3-5 yrs
• Cloud platform
• Real-time key parameter 

monitoring
• Big data storage, filtering, 

transmission and computing
• IoT wireless communication
• Separated closed loop

Connectivity challenges: 
• Cloud platform and connection
• Low cost and reliable real-time monitoring
• Big data storage, transmission, smart filtering, 

computing, close loop control algorithm
• Smart sensing and IoT wireless communication
• Highly reliable embedded DT chip/MCU 

integration 
• …
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Summary

• Driven by the ever-increasing societal needs for digitalization and intelligence, 

such as autonomous driving, Manufacture 4.0, “Smart-X”, “AI in all”, the demands 

for mission critical electronics components and systems are growing fast.

• To realize “performance and lifetime on demand” for mission critical electronics, 

DT will play an essential role. 

• The DT must be able to represent the PT reliably and efficiently, to achieve the 

ultimate aim of 1+1>2.
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Summary

• From analytical, empirical and numerical to NOVEL methods, evolutionary / 

revolutionary modeling& simulation ideas are not mature yet.  

• Integrated & concurrent development of physics of failure based models with AI 

driven big data/ML are possible solutions to predict the multi-scale/multi-

physics/full process/nonlinear/stochastic/time and temperature dependent 

responses of mission critical electronics. 
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Thanks for your attention


