Electronics quality and reliability for critical applications that adopt new technologies and designs

Alan Lucero Ravi Mahajan, Joe Walczyk Intel Corporation

November 2020

intel.

1

Purpose and Abstract

• Title

• Electronics quality and reliability for critical applications that adopt new technologies and designs.

Purpose

• Review and adapt the quality and reliability methods for design and qualification of leading-edge microelectronic technologies for critical and safe applications.

Abstract

• Modern societies are accustomed to low-cost, ubiquitous applications and underlying technologies to enhance life experiences and increase productivity. People interact with each other, machines and technology using low-cost semiconductors that are efficient, sufficiently capable and short-lived. Networked computation and automated electronic-mechanical systems with a mix of heterogeneous technologies are expected to perform, be safe for humans and dependable for up to 15 yrs. The challenge for designers, manufactures, test validation and technologies is to predict the dependability of the systems by adapting quality and reliability assessments and to qualify new products for known, unknown and changing uses. Failure-oriented acceleration testing; contemporary computational methods and field assessment can help respond to the challenge. Robustness testing, HALT/HASS potential enhancements are introduced for additional development. This presentation shows how adapted methods can be used to qualify safe and dependable products for their expected use while presenting methods to account for unexpected use.

• Keywords:

• thermal mechanical simulation, reliability models, thermal cycling, shock/vibration and application use conditions

intel.

Outline

- Motivation and Introduction
- Demand drivers for quality and reliability
- Use environments
- Failure Oriented Accelerated Testing
- Physics of Failure models
- Statistical models and implications
- Highly Accelerated Life Tests and Highly Accelerated Stress Screens
- Summary

intel.

3

Motivation – a simplified model

• Electronic devices are ubiquitous and enhance our lives

- Access devices are short lived mobile phones, tablets, gaming
- Productivity devices have medium life design devices, business computers, workstations, data centers
- Infrastructure and safe devices are long lived networks, manufacturing systems

- Access devices exploit capabilities / outputs of productivity and infrastructure devices at low cost
- Productivity devices create/optimize content and use other connected device capabilities med. cost
- Infrastructure devices preserve connectivity and capabilities at a higher cost
 - Safe devices preserve lives and safety at higher cost
- New technologies and devices are expensive and come with risk or challenges
 - New evaluation protocols are required to introduce capable and dependable products
 - Existing testing can be adapted for efficacy in improving dependability

intel.

Devices are connected

Introduction
 Dependability is most important for shared use and safety (at reasonable cost) Compute/networking availability impacts many people with potential for lost time/opportunity Safety and health considerations are the highest priority Contemporary components highly integrate functionality (SOC qual. includes dependability)
 Reliability must be designed into components and systems apriori Knowledge of end use must be considered at design / technology research stage Design for quality and reliability must be informed by physics of failure / FMEA
 Quality and reliability estimates are validated upon qualification Use test to failure or failure oriented accelerated testing Margin and operating limits must be known at qualification
intel.

Reliability test challenge: mimic failures in time during life $\stackrel{\scriptscriptstyle{16}}{\textcircled{3}}$							
Life Test	Accelerated Life Test	Highly Accelerated Stress/Life Test					
A life test simulates a use condition without acceleration	Accelerates a given physical mechanism without inducing any artifacts or new failure mechanisms not representative of the use environment.	Benchmark test to that accelerates failure by increasing the stress beyond the capability-strength to identify failures					
Typically time scale compression at the use condition. Used when an accelerated test does not adequately simulate the actual use environment.	An accelerated test is a reliability test where one or more conditions/stimuli (e.g., temperature, voltage, etc.) are increased to reduce times to failure to a manageable time frame.	Highly accelerated test where one or more conditions/stimuli exceed strength / capability to create and identify failure modes, assess marginality and trends. Creates failures in a very short time.					
Examples: Power Cycling (PC, duty - thermal cycling) Drop, a cell phone on concrete) Vibration (shipping via rail) Preconditioning (store/ship & SMT)	Examples: Temperature cycle (TC), Bake (HTSL) Highly accelerated stress test (HAST) Electromigration (EM) Time Dep. Dielectric Breakdown (TDDB)	Examples: Highly Accelerated Life Tests (<u>HALT</u> , TC+Vibe), Shock (dynamic pulse) Highly Accelerated Stress Test (<u>HSS</u> , ELT, Burn-in)					
Challenge: Test time is very long Advantage: Fail time distribution and AF undisputable	Challenge: Prevent test artifacts & deconvolute stimuli Advantage: Reasonable time to fail & Fail time distribution	Challenge: Strength and stress unknown (most often), failure data of limited use to solve issues or provide true, scaleable comparisons. Advantage: East time to fail and uncovers failures					
Accelerated Tests (Accelerated Tests	AT) ≠ Life test s ∝ Life test						

2

Q&R Goal Setting: customer demand, use and capability

• To set goals balance:

Consideration	Question
Customer requirements	What does the customer want?
Competitive pressure	What do competitors target?
Engineering capabilities	Can you achieve the goal?
Engineering costs	What's the cost of achieving goal?

• Other insights:

- Goals are market segment specific (automotive, phone...) drive process/material development
- Products in same market may have the same goal
- Goals are a business or mission-specific decision

intel.

Qualification: Stress-Based Qual. vs. Knowledge-Based Qua								
PRODUCT DEV. PLAN	FMEA	DESIGN	DEVELOPMENT	TESTING CHARACTERIZE	IMPROVE	CERTIFY TECHNOLOGY	PRODUCT QUAL	SYSTEM QUAL
STRESS BASED QUALIFICATION Assumed use, environment, duty cycling, software, models, validity of tests (fr. history & tables)								lity of tests
Customer requirement	Heuristics	Use EDA kit Estimate Q&R durability from models/history	Foundry report	Test prod. design	Test-Fail- Improve	Foundry, OSAT report	Stress based Quality & reliability – test to pass	Stress based
KNOWLEDGE APPLICATIONDefined use case, environment, duty cycling, software, failure-oriented testin physics of fail models (FOAT, POF, Knowledge Based Qual. KBQ/App. Specir Qual.)						nted testing, pp. Specific		
Customer functionality, use, environ.	Physics POF model Heuristics	Use EDA kit Estimate Q&R, durability from POF model	Validate physics of failure models	Failure oriented tests to failure statistics	Tech./model refinement, validate	Design rules validated; performance model valid, UC KBQ Report	Test to target define by use environment to stat. confidence Test to pass	Test to target define by use environment to stat. confidence Test to pass
Stress Based Qual. – benchmark: assumed/measured use, model, & requirement Knowledge Based Qual.: use documented, POF models, FOAT limits established								
intel.								

MFG OE	EM User ¹	Mechanism	Cause	Stimuli ²		
		Process Charging	Process-induced EOS	V		
	Const	Electrical Overstress	ESD and Latchup	V, I		
	IM	Infant Mortality	Extrinsic Defects	ν, τ		
	IM	Logic Failure	Test Coverage	n/a		
	WO	Hot Carrier	e-Impact ionization	V, I		
	WO	Neg. Bias-T Instability	Gate dielectric damage	ν, τ		
	WO	Electromigration	Atoms move by e- wind	I, T		
	WO	Time-Dep Diel. B'down	Gate dielectric leakage	ν, τ		
	WO	Stress Migration	Metal diffusion, voiding	Т		
	WO	Interlayer Cracking	Interlayer stress	DT		
	WO	Solder Joint Cracking	Atoms move w/ stress	DT		
	WO	Corrosion	Electrochemical reaction	V, T, RH		
	Const	Soft Error	<i>n</i> & α e ⁻ h pair creation	radiation		
Use Conditions (V, T) cause specific failure mechanisms						

intel.

Ex B: Key Results of Metric and Approach

• Empirical Model vs. Physics Based Model (regression vs. physics)

•					.,,				
MODEL	FORM FACTOR	TEMP. GRADIENT	TEMP. FIELD	USE LINK	RELIABILITY ESTIMATE		DESIGN FOR	RELIABILITY	
Accum. Fatigue Creep	All geometries	YES	YES	YES	Test Temp. cycles corelated to power cycles (exact trace)	o User	Optimum NCT Operating curv	Fs: pkg. size, cost /es: dif't boards/syst.	
Coffin-Manson-N-L	FF tested	Possible	NO	NO	Test Temp cycles		Trial / error – e	even w/trending	
 Benefits Common currency for demand, performance & design-Safety factor quantifiable Design for reliability enables: Optimal NCTF allocation & die placement Product Impact: thinner – smaller packages NCTF optimized: reduced BGA count >40% Package innovation for performance: MCP, POP enabled 									
Metrics enable understanding, technology trending, communication of capability and design for reliability									

49

Acknowledgements: collaborative / self-reinforcing innovation Pardeep Bhatti Kevin Semenuk • Xuejun Fan Shaw Fong Wong • Vijay Kulkarni Vasu Vasudevan Milena Vujosevic David Huitink • Min Pei Emre Armagan Shubhada Sahasrabudhe Richard Harries • Ru Han • Daeil Kwon Teiyu Zheng Sibashish Mukherjee • Wayne Ledger Robert Kwasnik • Wade Hazeltine Zack Eckbladt • Pramode Malakar • Yun Ge • Helia Rahmani intel.

Certifi	Certification / Qual. Methods Comparison								
	AREA	STANDARDS	KNOWLEDGE BASED						
	Rel. Models	Fixed model & Parameters	Failure Physic Parameter Characterized						
	Failure distribution	scale/ $\!\mu$ implied by sampling	Physics/design rule specific w/defects						
	Lifetime	10 yr.	Market specific						
	Goal	Zero Defect: 1% / 10k rDPM FIT – linear time	Market or Physics specific Non-linear in time – true						
	Metric	Test duration	Physics metric \propto reliability life estimate						
	Rel. Test	Singe condition tested	Many - report to standard test condition						
	Output	0 fails infer reliability	Margins characterized						
	Investments	None	Invest in ongoing knowledge, assessments and estimation						
	 Histor Method may align to technology or change KBQ – most appropriate for new technologies 								
intel.	• M	etrics for reliability are	different						